Ejemplo n.º 1
0
    def draw_das(D, ax):
        idx_img = info['show_reconstruction']
        sampler = D.sampler()
        S, _, _ = sampler.decode(D[idx_img])
        sky_model = D.ground_truth[idx_img]

        A = phased_array.steering_operator(D.XYZ, D.R, D.wl)
        alpha = 1 / (2 * pylinalg.eighMax(A))
        beta = 2 * D.lambda_[idx_img] * alpha * (1 - D.gamma) + 1

        exec_time = time.time()
        das = spectral.DAS(D.XYZ, S, D.wl, D.R) * 2 * alpha / beta
        exec_time = time.time() - exec_time

        if info['interpolation_order'] is not None:
            N = info['interpolation_order']
            approximate_kernel = True if (N > 15) else False
            interp = interpolate.Interpolator(N, approximate_kernel)
            N_s = N_px = D.R.shape[1]
            das = interp.__call__(weight=np.ones((N_s, )),
                                  support=D.R,
                                  f=das.reshape((1, N_px)),
                                  r=D.R)
            das = np.clip(das, a_min=0, a_max=None)

        das_plot = s2image.Image(data=das, grid=D.R)
        das_plot.draw(catalog=sky_model.xyz,
                      projection=info['projection'],
                      use_contours=False,
                      catalog_kwargs=dict(edgecolor='g', ),
                      ax=ax)
        ax.set_title(f'DAS, {exec_time:.02f} [s]')
Ejemplo n.º 2
0
    def draw_apgd(D, ax):
        idx_img = info['show_reconstruction']

        sampler = D.sampler()
        _, I_apgd, _ = sampler.decode(D[idx_img])
        sky_model = D.ground_truth[idx_img]
        tts = D.tts[idx_img]
        N_iter = D.N_iter[idx_img]

        if info['interpolation_order'] is not None:
            N = info['interpolation_order']
            approximate_kernel = True if (N > 15) else False
            interp = interpolate.Interpolator(N, approximate_kernel)
            N_s = N_px = D.R.shape[1]
            I_apgd = interp.__call__(weight=np.ones((N_s, )),
                                     support=D.R,
                                     f=I_apgd.reshape((1, N_px)),
                                     r=D.R)
            I_apgd = np.clip(I_apgd, a_min=0, a_max=None)

        apgd_plot = s2image.Image(data=I_apgd, grid=D.R)
        apgd_plot.draw(catalog=sky_model.xyz,
                       projection=info['projection'],
                       use_contours=False,
                       catalog_kwargs=dict(edgecolor='g', ),
                       ax=ax)
        ax.set_title(f'APGD {N_iter:02d} iter, {tts:.02f} [s]')
Ejemplo n.º 3
0
    def draw_tau(D, P, ax):
        N_antenna, N_px, K = D.XYZ.shape[1], D.R.shape[1], int(P['K'])
        parameter = crnn.Parameter(N_antenna, N_px, K)

        p_apgd_vec, p_rnn_vec = P['p_opt'][[0, np.argmin(P['v_loss'])]]
        p_apgd = dict(zip(['mu', 'D', 'tau'], parameter.decode(p_apgd_vec)))
        p_rnn = dict(zip(['mu', 'D', 'tau'], parameter.decode(p_rnn_vec)))
        tau_diff = (p_apgd['tau'] - p_rnn['tau']) / linalg.norm(p_apgd['tau'])

        if info['interpolation_order'] is not None:
            N = info['interpolation_order']
            approximate_kernel = True if (N > 15) else False
            interp = interpolate.Interpolator(N, approximate_kernel)
            N_s = N_px = D.R.shape[1]
            tau_diff = interp.__call__(weight=np.ones((N_s, )),
                                       support=D.R,
                                       f=tau_diff.reshape((1, N_px)),
                                       r=D.R)

        tau_plot = s2image.Image(data=tau_diff, grid=D.R)
        tau_plot.draw(projection=info['projection'],
                      use_contours=False,
                      catalog_kwargs=dict(edgecolor='g', ),
                      ax=ax)
        ax.set_title(
            r'$\frac{\tau_{APGD} - \tau_{RNN}}{\left\| \tau_{APGD} \right\|_{2}}$'
        )
Ejemplo n.º 4
0
    def draw_rnn_psf(D, P, ax):
        N_antenna, N_px, K = D.XYZ.shape[1], D.R.shape[1], int(P['K'])
        parameter = crnn.Parameter(N_antenna, N_px, K)

        R_focus = np.mean(D.R, axis=1)
        R_focus /= linalg.norm(R_focus)
        idx_focus = np.argmax(R_focus @ D.R)

        p_vec = P['p_opt'][np.argmin(P['v_loss'])]
        p = dict(zip(['mu', 'D', 'tau'], parameter.decode(p_vec)))

        Ln, _ = graph.laplacian_exp(D.R, normalized=True)
        fltr = graph.ConvolutionalFilter(Ln, K)
        filter = fltr.filter(p['mu'], e(idx_focus, N_px))
        psf = np.abs(filter)
        psf[idx_focus] = 0

        if info['interpolation_order'] is not None:
            N = info['interpolation_order']
            approximate_kernel = True if (N > 15) else False
            interp = interpolate.Interpolator(N, approximate_kernel)
            N_s = N_px = D.R.shape[1]
            psf = interp.__call__(weight=np.ones((N_s, )),
                                  support=D.R,
                                  f=psf.reshape((1, N_px)),
                                  r=D.R)
            psf = np.clip(psf, a_min=0, a_max=None)

        psf_plot = s2image.Image(data=psf, grid=D.R)
        psf_plot.draw(projection=info['projection'],
                      use_contours=False,
                      catalog_kwargs=dict(edgecolor='g', ),
                      ax=ax)
        ax.set_title(r'$\Psi_{RNN}(r, r_{0})$')
Ejemplo n.º 5
0
    def draw_apgd_filter(D, ax):
        R_focus = np.mean(D.R, axis=1)
        R_focus /= linalg.norm(R_focus)
        idx_focus = np.argmax(R_focus @ D.R)

        A = phased_array.steering_operator(D.XYZ, D.R, D.wl)
        N_px = D.R.shape[1]
        alpha = 1 / (2 * pylinalg.eighMax(A))
        beta = 2 * np.median(D.lambda_) * alpha * (1 - D.gamma) + 1
        psf = pylinalg.psf_exp(D.XYZ, D.R, D.wl, center=R_focus)
        filter = (e(idx_focus, N_px) - 2 * alpha * psf) / beta

        if info['interpolation_order'] is not None:
            N = info['interpolation_order']
            approximate_kernel = True if (N > 15) else False
            interp = interpolate.Interpolator(N, approximate_kernel)
            N_s = N_px = D.R.shape[1]
            filter = interp.__call__(weight=np.ones((N_s, )),
                                     support=D.R,
                                     f=filter.reshape((1, N_px)),
                                     r=D.R)
            filter = np.clip(filter, a_min=0, a_max=None)

        filter_plot = s2image.Image(data=filter, grid=D.R)
        filter_plot.draw(projection=info['projection'],
                         use_contours=False,
                         catalog_kwargs=dict(edgecolor='g', ),
                         ax=ax)
        ax.set_title(r'$p_{\theta}^{APGD}\left(\widetilde{L}\right)$')
Ejemplo n.º 6
0
    def draw_apgd_psf(D, ax):
        R_focus = np.mean(D.R, axis=1)
        R_focus /= linalg.norm(R_focus)

        A = phased_array.steering_operator(D.XYZ, D.R, D.wl)
        alpha = 1 / (2 * pylinalg.eighMax(A))
        beta = 2 * np.median(D.lambda_) * alpha * (1 - D.gamma) + 1
        psf = (pylinalg.psf_exp(D.XYZ, D.R, D.wl, center=R_focus) *
               (2 * alpha / beta))

        if info['interpolation_order'] is not None:
            N = info['interpolation_order']
            approximate_kernel = True if (N > 15) else False
            interp = interpolate.Interpolator(N, approximate_kernel)
            N_s = N_px = D.R.shape[1]
            psf = interp.__call__(weight=np.ones((N_s, )),
                                  support=D.R,
                                  f=psf.reshape((1, N_px)),
                                  r=D.R)
            psf = np.clip(psf, a_min=0, a_max=None)

        psf_plot = s2image.Image(data=psf, grid=D.R)
        psf_plot.draw(projection=info['projection'],
                      use_contours=False,
                      catalog_kwargs=dict(edgecolor='g', ),
                      ax=ax)
        ax.set_title(r'$\Psi_{APGD}(r, r_{0})$')
Ejemplo n.º 7
0
    def draw_rnn(D, P, ax):
        idx_img = info['show_reconstruction']

        sampler = D.sampler()
        S, _, I_prev = sampler.decode(D[idx_img])
        sky_model = D.ground_truth[idx_img]

        N_antenna, N_px, K, N_layer = D.XYZ.shape[1], D.R.shape[1], int(
            P['K']), int(P['N_layer'])
        parameter = crnn.Parameter(N_antenna, N_px, K)
        p_vec = P['p_opt'][np.argmin(P['v_loss'])]
        p = dict(zip(['mu', 'D', 'tau'], parameter.decode(p_vec)))

        Ln, _ = graph.laplacian_exp(D.R, normalized=True)
        rnn_eval = crnn.Evaluator(
            N_layer, parameter, p_vec, Ln,
            lambda _: func.retanh(P['tanh_lin_limit'], _))
        exec_time = time.time()
        I_rnn = rnn_eval(S, I_prev)
        exec_time = time.time() - exec_time

        if info['interpolation_order'] is not None:
            N = info['interpolation_order']
            approximate_kernel = True if (N > 15) else False
            interp = interpolate.Interpolator(N, approximate_kernel)
            N_s = N_px = D.R.shape[1]
            I_rnn = interp.__call__(weight=np.ones((N_s, )),
                                    support=D.R,
                                    f=I_rnn.reshape((1, N_px)),
                                    r=D.R)
            I_rnn = np.clip(I_rnn, a_min=0, a_max=None)

        rnn_plot = s2image.Image(data=I_rnn, grid=D.R)
        rnn_plot.draw(catalog=sky_model.xyz,
                      projection=info['projection'],
                      use_contours=False,
                      catalog_kwargs=dict(edgecolor='g', ),
                      ax=ax)
        ax.set_title(f'RNN {N_layer:02d} iter, {exec_time:.02f} [s]')
Ejemplo n.º 8
0
    def draw_trunc(D, P, ax):
        idx_img = info['show_reconstruction']

        sampler = D.sampler()
        S, _, I_prev = sampler.decode(D[idx_img])
        sky_model = D.ground_truth[idx_img]

        N_layer = int(P['N_layer'])
        A = phased_array.steering_operator(D.XYZ, D.R, D.wl)
        lambda_ = D.lambda_[idx_img]
        I_trunc = apgd.solve(S,
                             A,
                             lambda_=lambda_,
                             gamma=D.gamma,
                             x0=I_prev.copy(),
                             N_iter_max=N_layer)
        tts = I_trunc['time']
        N_iter = I_trunc['niter']
        I_trunc = I_trunc['sol']

        if info['interpolation_order'] is not None:
            N = info['interpolation_order']
            approximate_kernel = True if (N > 15) else False
            interp = interpolate.Interpolator(N, approximate_kernel)
            N_s = N_px = D.R.shape[1]
            I_trunc = interp.__call__(weight=np.ones((N_s, )),
                                      support=D.R,
                                      f=I_trunc.reshape((1, N_px)),
                                      r=D.R)
            I_trunc = np.clip(I_trunc, a_min=0, a_max=None)

        trunc_plot = s2image.Image(data=I_trunc, grid=D.R)
        trunc_plot.draw(catalog=sky_model.xyz,
                        projection=info['projection'],
                        use_contours=False,
                        catalog_kwargs=dict(edgecolor='g', ),
                        ax=ax)
        ax.set_title(f'APGD {N_iter:02d} iter, {tts:.02f} [s]')
Ejemplo n.º 9
0
    def draw_learned_dirty_image(D, P, ax):
        idx_img = info['show_reconstruction']

        N_antenna, N_px, K = D.XYZ.shape[1], D.R.shape[1], int(P['K'])
        parameter = crnn.Parameter(N_antenna, N_px, K)
        sampler = D.sampler()

        p_rnn_vec = P['p_opt'][np.argmin(P['v_loss'])]
        p_rnn = dict(zip(['mu', 'D', 'tau'], parameter.decode(p_rnn_vec)))

        S, _, _ = sampler.decode(D[idx_img])
        sky_model = D.ground_truth[idx_img]

        Ds, Vs = linalg.eigh(S)
        idx = Ds > 0  # To avoid np.sqrt() issues.
        Ds, Vs = Ds[idx], Vs[:, idx]
        I_learned = linalg.norm(p_rnn['D'].conj().T @ (Vs * np.sqrt(Ds)),
                                axis=1)**2

        if info['interpolation_order'] is not None:
            N = info['interpolation_order']
            approximate_kernel = True if (N > 15) else False
            interp = interpolate.Interpolator(N, approximate_kernel)
            N_s = N_px = D.R.shape[1]
            I_learned = interp.__call__(weight=np.ones((N_s, )),
                                        support=D.R,
                                        f=I_learned.reshape((1, N_px)),
                                        r=D.R)
            I_learned = np.clip(I_learned, a_min=0, a_max=None)

        learned_plot = s2image.Image(data=I_learned, grid=D.R)
        learned_plot.draw(catalog=sky_model.xyz,
                          projection=info['projection'],
                          use_contours=False,
                          catalog_kwargs=dict(edgecolor='g', ),
                          ax=ax)
        ax.set_title(r'diag$\left(D^{H} \hat{\Sigma} D\right)$')
Ejemplo n.º 10
0
def process(args):
    file = pathlib.Path(args.dataset).expanduser().absolute()
    if not (file.exists() and (file.suffix == '.npz')):
        raise ValueError('Dataset is non-conformant.')
    D = nn.DataSet.from_file(str(file))
    N_sample = len(D)

    if not (0 <= args.img_idx < N_sample):
        raise ValueError('Parameter[img_idx] is out-of-bounds.')

    S, I_apgd, I_prev = D.sampler().decode(D[args.img_idx])
    I_das = spectral.DAS(D.XYZ, S, D.wl, D.R)

    # Rescale DAS to lie on same range as APGD
    A = phased_array.steering_operator(D.XYZ, D.R, D.wl)
    alpha = 1 / (2 * pylinalg.eighMax(A))
    beta = 2 * D.lambda_[args.img_idx] * alpha * (1 - D.gamma) + 1
    I_das *= (2 * alpha) / beta

    if args.interpolation_order is not None:
        N = args.interpolation_order
        approximate_kernel = True if (N > 15) else False
        interp = interpolate.Interpolator(N, approximate_kernel)
        N_s = N_px = D.R.shape[1]

        I_prev = interp.__call__(weight=np.ones((N_s, )),
                                 support=D.R,
                                 f=I_prev.reshape((1, N_px)),
                                 r=D.R)
        I_prev = np.clip(I_prev, a_min=0, a_max=None)

        I_apgd = interp.__call__(weight=np.ones((N_s, )),
                                 support=D.R,
                                 f=I_apgd.reshape((1, N_px)),
                                 r=D.R)
        I_apgd = np.clip(I_apgd, a_min=0, a_max=None)

        I_das = interp.__call__(weight=np.ones((N_s, )),
                                support=D.R,
                                f=I_das.reshape((1, N_px)),
                                r=D.R)
        I_das = np.clip(I_das, a_min=0, a_max=None)

    fig = plt.figure()
    ax_prev = fig.add_subplot(131)
    ax_apgd = fig.add_subplot(132)
    ax_das = fig.add_subplot(133)

    s2image.Image(I_prev, D.R).draw(catalog=D.ground_truth[args.img_idx].xyz,
                                    projection=args.projection,
                                    catalog_kwargs=dict(edgecolor='g', ),
                                    ax=ax_prev)
    ax_prev.set_title(r'$APGD_{init}$')

    s2image.Image(I_apgd, D.R).draw(catalog=D.ground_truth[args.img_idx].xyz,
                                    projection=args.projection,
                                    catalog_kwargs=dict(edgecolor='g', ),
                                    ax=ax_apgd)
    ax_apgd.set_title('APGD')

    s2image.Image(I_das, D.R).draw(catalog=D.ground_truth[args.img_idx].xyz,
                                   projection=args.projection,
                                   catalog_kwargs=dict(edgecolor='g', ),
                                   ax=ax_das)
    ax_das.set_title('DAS')

    fig.show()