Ejemplo n.º 1
0
    def __eq__(self, other, rtol=1.0e-5, atol=1.0e-8):
        """Override '==' to allow comparison with other raster objecs

        Input
           other: Raster instance to compare to
           rtol, atol: Relative and absolute tolerance.
                       See numpy.allclose for details
        """

        # Check type
        if not isinstance(other, Raster):
            msg = ('Raster instance cannot be compared to %s'
                   ' as its type is %s ' % (str(other), type(other)))
            raise TypeError(msg)

        # Check projection
        if self.projection != other.projection:
            return False

        # Check geotransform
        if self.get_geotransform() != other.get_geotransform():
            return False

        # Check data
        if not nanallclose(self.get_data(),
                           other.get_data(),
                           rtol=rtol, atol=atol):
            return False

        # Check keywords
        if self.keywords != other.keywords:
            return False

        # Raster layers are identical up to the specified tolerance
        return True
Ejemplo n.º 2
0
    def test_linear_interpolation_nan_array(self):
        """Interpolation library works (linear mode) with grid points being NaN
        """

        # Define pixel centers along each direction
        x = [0.0, 1.0, 2.0, 3.0, 4.0, 5.0]
        y = [4.0, 5.0, 7.0, 9.0, 11.0, 13.0]

        # Define ny by nx array with corresponding values
        A = numpy.zeros((len(x), len(y)))

        # Define values for each x, y pair as a linear function
        for i in range(len(x)):
            for j in range(len(y)):
                A[i, j] = linear_function(x[i], y[j])
        A[2, 3] = numpy.nan  # (x=2.0, y=9.0): NaN

        # Then test that interpolated points can contain NaN
        xis = numpy.linspace(x[0], x[-1], 12)
        etas = numpy.linspace(y[0], y[-1], 10)
        points = combine_coordinates(xis, etas)

        vals = interpolate2d(x, y, A, points, mode='linear')
        refs = linear_function(points[:, 0], points[:, 1])

        # Set reference result with expected NaNs and compare
        for i, (xi, eta) in enumerate(points):
            if (1.0 < xi <= 3.0) and (7.0 < eta <= 11.0):
                refs[i] = numpy.nan

        assert nanallclose(vals, refs, rtol=1e-12, atol=1e-12)
Ejemplo n.º 3
0
    def test_linear_interpolation_nan_array(self):
        """Interpolation library works (linear mode) with grid points being NaN
        """

        # Define pixel centers along each direction
        x = [0.0, 1.0, 2.0, 3.0, 4.0, 5.0]
        y = [4.0, 5.0, 7.0, 9.0, 11.0, 13.0]

        # Define ny by nx array with corresponding values
        A = numpy.zeros((len(x), len(y)))

        # Define values for each x, y pair as a linear function
        for i in range(len(x)):
            for j in range(len(y)):
                A[i, j] = linear_function(x[i], y[j])
        A[2, 3] = numpy.nan  # (x=2.0, y=9.0): NaN

        # Then test that interpolated points can contain NaN
        xis = numpy.linspace(x[0], x[-1], 12)
        etas = numpy.linspace(y[0], y[-1], 10)
        points = combine_coordinates(xis, etas)

        vals = interpolate2d(x, y, A, points, mode='linear')
        refs = linear_function(points[:, 0], points[:, 1])

        # Set reference result with expected NaNs and compare
        for i, (xi, eta) in enumerate(points):
            if (1.0 < xi <= 3.0) and (7.0 < eta <= 11.0):
                refs[i] = numpy.nan

        assert nanallclose(vals, refs, rtol=1e-12, atol=1e-12)
Ejemplo n.º 4
0
    def test_linear_interpolation_nan_points(self):
        """Interpolation library works with interpolation points being NaN

        This is was the reason for bug reported in:
        https://github.com/AIFDR/riab/issues/155
        """

        # Define pixel centers along each direction
        x = [1.0, 2.0, 4.0]
        y = [5.0, 9.0]

        # Define ny by nx array with corresponding values
        A = numpy.zeros((len(x), len(y)))

        # Define values for each x, y pair as a linear function
        for i in range(len(x)):
            for j in range(len(y)):
                A[i, j] = linear_function(x[i], y[j])

        # Then test that interpolated points can contain NaN
        xis = numpy.linspace(x[0], x[-1], 10)
        etas = numpy.linspace(y[0], y[-1], 10)
        xis[6:7] = numpy.nan
        etas[3] = numpy.nan
        points = combine_coordinates(xis, etas)

        vals = interpolate2d(x, y, A, points, mode='linear')
        refs = linear_function(points[:, 0], points[:, 1])
        assert nanallclose(vals, refs, rtol=1e-12, atol=1e-12)
Ejemplo n.º 5
0
    def test_linear_interpolation_nan_points(self):
        """Interpolation library works with interpolation points being NaN

        This is was the reason for bug reported in:
        https://github.com/AIFDR/riab/issues/155
        """

        # Define pixel centers along each direction
        x = [1.0, 2.0, 4.0]
        y = [5.0, 9.0]

        # Define ny by nx array with corresponding values
        A = numpy.zeros((len(x), len(y)))

        # Define values for each x, y pair as a linear function
        for i in range(len(x)):
            for j in range(len(y)):
                A[i, j] = linear_function(x[i], y[j])

        # Then test that interpolated points can contain NaN
        xis = numpy.linspace(x[0], x[-1], 10)
        etas = numpy.linspace(y[0], y[-1], 10)
        xis[6:7] = numpy.nan
        etas[3] = numpy.nan
        points = combine_coordinates(xis, etas)

        vals = interpolate2d(x, y, A, points, mode='linear')
        refs = linear_function(points[:, 0], points[:, 1])
        assert nanallclose(vals, refs, rtol=1e-12, atol=1e-12)
Ejemplo n.º 6
0
    def test_native_raster_resolution(self):
        """Raster layer retains native resolution through Geoserver

        Raster layer can be uploaded and downloaded again with
        native resolution. This is one test for ticket #103
        """

        hazard_filename = ('%s/maumere_aos_depth_20m_land_wgs84.asc' %
                           TESTDATA)

        # Get reference values
        H = read_layer(hazard_filename)
        A_ref = H.get_data(nan=True)
        depth_min_ref, depth_max_ref = H.get_extrema()

        # Upload to internal geonode
        hazard_layer = save_to_geonode(hazard_filename, user=self.user)
        hazard_name = '%s:%s' % (hazard_layer.workspace, hazard_layer.name)

        # Download data again with native resolution
        bbox = get_bounding_box_string(hazard_filename)
        H = download(INTERNAL_SERVER_URL, hazard_name, bbox)
        A = H.get_data(nan=True)

        # Compare shapes
        msg = ('Shape of downloaded raster was [%i, %i]. '
               'Expected [%i, %i].' %
               (A.shape[0], A.shape[1], A_ref.shape[0], A_ref.shape[1]))
        assert numpy.allclose(A_ref.shape, A.shape, rtol=0, atol=0), msg

        # Compare extrema to values reference values (which have also been
        # verified by QGIS for this layer and tested in test_engine.py)
        depth_min, depth_max = H.get_extrema()
        msg = ('Extrema of downloaded file were [%f, %f] but '
               'expected [%f, %f]' %
               (depth_min, depth_max, depth_min_ref, depth_max_ref))
        assert numpy.allclose([depth_min, depth_max],
                              [depth_min_ref, depth_max_ref],
                              rtol=1.0e-6,
                              atol=1.0e-10), msg

        # Compare data number by number
        assert nanallclose(A, A_ref, rtol=1.0e-8)
Ejemplo n.º 7
0
    def test_interpolation_random_array_and_nan(self):
        """Interpolation library (constant and linear) works with NaN
        """

        # Define pixel centers along each direction
        x = numpy.arange(20) * 1.0
        y = numpy.arange(25) * 1.0

        # Define ny by nx array with corresponding values
        A = numpy.zeros((len(x), len(y)))

        # Define arbitrary values for each x, y pair
        numpy.random.seed(17)
        A = numpy.random.random((len(x), len(y))) * 10

        # Create islands of NaN
        A[5, 13] = numpy.nan
        A[6, 14] = A[6, 18] = numpy.nan
        A[7, 14:18] = numpy.nan
        A[8, 13:18] = numpy.nan
        A[9, 12:19] = numpy.nan
        A[10, 14:17] = numpy.nan
        A[11, 15] = numpy.nan

        A[15, 5:6] = numpy.nan

        # Creat interpolation points
        xis = numpy.linspace(x[0], x[-1], 39)  # Hit all mid points
        etas = numpy.linspace(y[0], y[-1], 73)  # Hit thirds
        points = combine_coordinates(xis, etas)

        for mode in ['linear', 'constant']:
            vals = interpolate2d(x, y, A, points, mode=mode)

            # Calculate reference result with expected NaNs and compare
            i = j = 0
            for k, (xi, eta) in enumerate(points):

                # Find indices of nearest higher value in x and y
                i = numpy.searchsorted(x, xi)
                j = numpy.searchsorted(y, eta)

                if i > 0 and j > 0:

                    # Get four neigbours
                    A00 = A[i - 1, j - 1]
                    A01 = A[i - 1, j]
                    A10 = A[i, j - 1]
                    A11 = A[i, j]

                    if numpy.allclose(xi, x[i]):
                        alpha = 1.0
                    else:
                        alpha = 0.5

                    if numpy.allclose(eta, y[j]):
                        beta = 1.0
                    else:
                        beta = eta - y[j - 1]

                    if mode == 'linear':
                        if numpy.any(numpy.isnan([A00, A01, A10, A11])):
                            ref = numpy.nan
                        else:
                            ref = (A00 * (1 - alpha) * (1 - beta) + A01 *
                                   (1 - alpha) * beta + A10 * alpha *
                                   (1 - beta) + A11 * alpha * beta)
                    elif mode == 'constant':
                        assert alpha >= 0.5  # Only case in this test

                        if beta < 0.5:
                            ref = A10
                        else:
                            ref = A11
                    else:
                        msg = 'Unknown mode: %s' % mode
                        raise Exception(msg)

                    #print i, j, xi, eta, alpha, beta, vals[k], ref
                    assert nanallclose(vals[k], ref, rtol=1e-12, atol=1e-12)
Ejemplo n.º 8
0
    def test_interpolation_random_array_and_nan(self):
        """Interpolation library (constant and linear) works with NaN
        """

        # Define pixel centers along each direction
        x = numpy.arange(20) * 1.0
        y = numpy.arange(25) * 1.0

        # Define ny by nx array with corresponding values
        A = numpy.zeros((len(x), len(y)))

        # Define arbitrary values for each x, y pair
        numpy.random.seed(17)
        A = numpy.random.random((len(x), len(y))) * 10

        # Create islands of NaN
        A[5, 13] = numpy.nan
        A[6, 14] = A[6, 18] = numpy.nan
        A[7, 14:18] = numpy.nan
        A[8, 13:18] = numpy.nan
        A[9, 12:19] = numpy.nan
        A[10, 14:17] = numpy.nan
        A[11, 15] = numpy.nan

        A[15, 5:6] = numpy.nan

        # Creat interpolation points
        xis = numpy.linspace(x[0], x[-1], 39)   # Hit all mid points
        etas = numpy.linspace(y[0], y[-1], 73)  # Hit thirds
        points = combine_coordinates(xis, etas)

        for mode in ['linear', 'constant']:
            vals = interpolate2d(x, y, A, points, mode=mode)

            # Calculate reference result with expected NaNs and compare
            i = j = 0
            for k, (xi, eta) in enumerate(points):

                # Find indices of nearest higher value in x and y
                i = numpy.searchsorted(x, xi)
                j = numpy.searchsorted(y, eta)

                if i > 0 and j > 0:

                    # Get four neigbours
                    A00 = A[i - 1, j - 1]
                    A01 = A[i - 1, j]
                    A10 = A[i, j - 1]
                    A11 = A[i, j]

                    if numpy.allclose(xi, x[i]):
                        alpha = 1.0
                    else:
                        alpha = 0.5

                    if numpy.allclose(eta, y[j]):
                        beta = 1.0
                    else:
                        beta = eta - y[j - 1]

                    if mode == 'linear':
                        if numpy.any(numpy.isnan([A00, A01, A10, A11])):
                            ref = numpy.nan
                        else:
                            ref = (A00 * (1 - alpha) * (1 - beta) +
                                   A01 * (1 - alpha) * beta +
                                   A10 * alpha * (1 - beta) +
                                   A11 * alpha * beta)
                    elif mode == 'constant':
                        assert alpha >= 0.5  # Only case in this test

                        if beta < 0.5:
                            ref = A10
                        else:
                            ref = A11
                    else:
                        msg = 'Unknown mode: %s' % mode
                        raise Exception(msg)

                    #print i, j, xi, eta, alpha, beta, vals[k], ref
                    assert nanallclose(vals[k], ref, rtol=1e-12, atol=1e-12)
Ejemplo n.º 9
0
    def test_data_resampling_example(self):
        """Raster data is unchanged when going through geonode

        """

        # Name file names for hazard level, exposure and expected fatalities
        hazard_filename = ('%s/maumere_aos_depth_20m_land_wgs84.asc'
                           % TESTDATA)
        exposure_filename = ('%s/maumere_pop_prj.shp' % TESTDATA)

        #------------
        # Hazard data
        #------------
        # Read hazard input data for reference
        H_ref = read_layer(hazard_filename)

        A_ref = H_ref.get_data()
        depth_min_ref, depth_max_ref = H_ref.get_extrema()

        # Upload to internal geonode
        hazard_layer = save_to_geonode(hazard_filename, user=self.user)
        hazard_name = '%s:%s' % (hazard_layer.workspace, hazard_layer.name)

        # Download data again
        bbox = get_bounding_box_string(hazard_filename)  # The biggest
        H = download(INTERNAL_SERVER_URL, hazard_name, bbox)

        A = H.get_data()
        depth_min, depth_max = H.get_extrema()

        # FIXME (Ole): The layer read from file is single precision only:
        # Issue #17
        # Here's the explanation why interpolation below produce slightly
        # different results (but why?)
        # The layer read from file is single precision which may be due to
        # the way it is converted from ASC to TIF. In other words the
        # problem may be in raster.write_to_file. Float64 is
        # specified there, so this is a mystery.
        #print 'A', A.dtype          # Double precision
        #print 'A_ref', A_ref.dtype  # Single precision

        # Compare extrema to values from numpy array
        assert numpy.allclose(depth_max, numpy.nanmax(A),
                              rtol=1.0e-12, atol=1.0e-12)

        assert numpy.allclose(depth_max_ref, numpy.nanmax(A_ref),
                              rtol=1.0e-12, atol=1.0e-12)

        # Compare to reference
        assert numpy.allclose([depth_min, depth_max],
                              [depth_min_ref, depth_max_ref],
                              rtol=1.0e-12, atol=1.0e-12)

        # Compare extrema to values read off QGIS for this layer
        assert numpy.allclose([depth_min, depth_max], [0.0, 16.68],
                              rtol=1.0e-6, atol=1.0e-10)

        # Investigate difference visually
        #from matplotlib.pyplot import matshow, show
        #matshow(A)
        #matshow(A_ref)
        #matshow(A - A_ref)
        #show()

        #print
        for i in range(A.shape[0]):
            for j in range(A.shape[1]):
                if not numpy.isnan(A[i, j]):
                    err = abs(A[i, j] - A_ref[i, j])
                    if err > 0:
                        msg = ('%i, %i: %.15f, %.15f, %.15f'
                               % (i, j, A[i, j], A_ref[i, j], err))
                        raise Exception(msg)
                    #if A[i,j] > 16:
                    #    print i, j, A[i, j], A_ref[i, j]

        # Compare elements (nan & numbers)
        id_nan = numpy.isnan(A)
        id_nan_ref = numpy.isnan(A_ref)
        assert numpy.all(id_nan == id_nan_ref)
        assert numpy.allclose(A[-id_nan], A_ref[-id_nan],
                              rtol=1.0e-15, atol=1.0e-15)

        #print 'MAX', A[245, 283], A_ref[245, 283]
        #print 'MAX: %.15f %.15f %.15f' %(A[245, 283], A_ref[245, 283])
        assert numpy.allclose(A[245, 283], A_ref[245, 283],
                              rtol=1.0e-15, atol=1.0e-15)

        #--------------
        # Exposure data
        #--------------
        # Read exposure input data for reference
        E_ref = read_layer(exposure_filename)

        # Upload to internal geonode
        exposure_layer = save_to_geonode(exposure_filename, user=self.user)
        exposure_name = '%s:%s' % (exposure_layer.workspace,
                                   exposure_layer.name)

        # Download data again
        E = download(INTERNAL_SERVER_URL, exposure_name, bbox)

        # Check exposure data against reference
        coordinates = E.get_geometry()
        coordinates_ref = E_ref.get_geometry()
        assert numpy.allclose(coordinates, coordinates_ref,
                              rtol=1.0e-12, atol=1.0e-12)

        attributes = E.get_data()
        attributes_ref = E_ref.get_data()
        for i, att in enumerate(attributes):
            att_ref = attributes_ref[i]
            for key in att:
                assert att[key] == att_ref[key]

        # Test riab's interpolation function
        I = H.interpolate(E, name='depth')
        icoordinates = I.get_geometry()

        I_ref = H_ref.interpolate(E_ref, name='depth')
        icoordinates_ref = I_ref.get_geometry()

        assert numpy.allclose(coordinates,
                              icoordinates,
                              rtol=1.0e-12, atol=1.0e-12)
        assert numpy.allclose(coordinates,
                              icoordinates_ref,
                              rtol=1.0e-12, atol=1.0e-12)

        iattributes = I.get_data()
        assert numpy.allclose(icoordinates, coordinates)

        N = len(icoordinates)
        assert N == 891

        # Set tolerance for single precision until issue #17 has been fixed
        # It appears that the single precision leads to larger interpolation
        # errors
        rtol_issue17 = 2.0e-3
        atol_issue17 = 1.0e-4

        # Verify interpolated values with test result
        for i in range(N):

            interpolated_depth_ref = I_ref.get_data()[i]['depth']
            interpolated_depth = iattributes[i]['depth']

            assert nanallclose(interpolated_depth,
                               interpolated_depth_ref,
                               rtol=rtol_issue17, atol=atol_issue17)

            pointid = attributes[i]['POINTID']

            if pointid == 263:

                #print i, pointid, attributes[i],
                #print interpolated_depth, coordinates[i]

                # Check that location is correct
                assert numpy.allclose(coordinates[i],
                                      [122.20367299, -8.61300358],
                                      rtol=1.0e-7, atol=1.0e-12)

                # This is known to be outside inundation area so should
                # near zero
                assert numpy.allclose(interpolated_depth, 0.0,
                                      rtol=1.0e-12, atol=1.0e-12)

            if pointid == 148:
                # Check that location is correct
                #print coordinates[i]
                assert numpy.allclose(coordinates[i],
                                      [122.2045912, -8.608483265],
                                      rtol=1.0e-7, atol=1.0e-12)

                # This is in an inundated area with a surrounding depths of
                # 4.531, 3.911
                # 2.675, 2.583
                assert interpolated_depth < 4.531
                assert interpolated_depth < 3.911
                assert interpolated_depth > 2.583
                assert interpolated_depth > 2.675

                #print interpolated_depth
                # This is a characterisation test for bilinear interpolation
                assert numpy.allclose(interpolated_depth, 3.62477215491,
                                      rtol=rtol_issue17, atol=1.0e-12)

            # Check that interpolated points are within range
            msg = ('Interpolated depth %f at point %i was outside extrema: '
                   '[%f, %f]. ' % (interpolated_depth, i,
                                   depth_min, depth_max))

            if not numpy.isnan(interpolated_depth):
                assert depth_min <= interpolated_depth <= depth_max, msg
Ejemplo n.º 10
0
    def test_raster_scaling(self):
        """Raster layers can be scaled when resampled

        This is a test for ticket #168

        Native test .asc data has

        ncols         5525
        nrows         2050
        cellsize      0.0083333333333333

        Scaling is necessary for raster data that represents density
        such as population per km^2
        """

        for test_filename in [
                'Population_Jakarta_geographic.asc', 'Population_2010.asc'
        ]:

            raster_filename = ('%s/%s' % (TESTDATA, test_filename))

            # Get reference values
            R = read_layer(raster_filename)
            R_min_ref, R_max_ref = R.get_extrema()
            native_resolution = R.get_resolution()

            # Upload to internal geonode
            raster_layer = save_to_geonode(raster_filename, user=self.user)
            raster_name = '%s:%s' % (raster_layer.workspace, raster_layer.name)

            # Test for a range of resolutions
            for res in [
                    0.02,
                    0.01,
                    0.005,
                    0.002,
                    0.001,
                    0.0005,  # Coarser
                    0.0002
            ]:  # Finer

                # To save time don't do finest resolution for the
                # large population set
                if test_filename.startswith('Population_2010') and res < 0.005:
                    break

                bbox = get_bounding_box_string(raster_filename)

                R = download(INTERNAL_SERVER_URL,
                             raster_name,
                             bbox,
                             resolution=res)
                A_native = R.get_data(scaling=False)
                A_scaled = R.get_data(scaling=True)

                sigma = (R.get_resolution()[0] / native_resolution[0])**2

                # Compare extrema
                expected_scaled_max = sigma * numpy.nanmax(A_native)
                msg = ('Resampled raster was not rescaled correctly: '
                       'max(A_scaled) was %f but expected %f' %
                       (numpy.nanmax(A_scaled), expected_scaled_max))

                assert numpy.allclose(expected_scaled_max,
                                      numpy.nanmax(A_scaled),
                                      rtol=1.0e-8,
                                      atol=1.0e-8), msg

                expected_scaled_min = sigma * numpy.nanmin(A_native)
                msg = ('Resampled raster was not rescaled correctly: '
                       'min(A_scaled) was %f but expected %f' %
                       (numpy.nanmin(A_scaled), expected_scaled_min))
                assert numpy.allclose(expected_scaled_min,
                                      numpy.nanmin(A_scaled),
                                      rtol=1.0e-8,
                                      atol=1.0e-12), msg

                # Compare elementwise
                msg = 'Resampled raster was not rescaled correctly'
                assert nanallclose(A_native * sigma,
                                   A_scaled,
                                   rtol=1.0e-8,
                                   atol=1.0e-8), msg

                # Check that it also works with manual scaling
                A_manual = R.get_data(scaling=sigma)
                msg = 'Resampled raster was not rescaled correctly'
                assert nanallclose(A_manual,
                                   A_scaled,
                                   rtol=1.0e-8,
                                   atol=1.0e-8), msg

                # Check that an exception is raised for bad arguments
                try:
                    R.get_data(scaling='bad')
                except:
                    pass
                else:
                    msg = 'String argument should have raised exception'
                    raise Exception(msg)

                try:
                    R.get_data(scaling='(1, 3)')
                except:
                    pass
                else:
                    msg = 'Tuple argument should have raised exception'
                    raise Exception(msg)

                # Check None option without existence of density keyword
                A_none = R.get_data(scaling=None)
                msg = 'Data should not have changed'
                assert nanallclose(A_native,
                                   A_none,
                                   rtol=1.0e-12,
                                   atol=1.0e-12), msg

                # Try with None and density keyword
                R.keywords['density'] = 'true'
                A_none = R.get_data(scaling=None)
                msg = 'Resampled raster was not rescaled correctly'
                assert nanallclose(A_scaled,
                                   A_none,
                                   rtol=1.0e-12,
                                   atol=1.0e-12), msg

                R.keywords['density'] = 'Yes'
                A_none = R.get_data(scaling=None)
                msg = 'Resampled raster was not rescaled correctly'
                assert nanallclose(A_scaled,
                                   A_none,
                                   rtol=1.0e-12,
                                   atol=1.0e-12), msg

                R.keywords['density'] = 'False'
                A_none = R.get_data(scaling=None)
                msg = 'Data should not have changed'
                assert nanallclose(A_native,
                                   A_none,
                                   rtol=1.0e-12,
                                   atol=1.0e-12), msg

                R.keywords['density'] = 'no'
                A_none = R.get_data(scaling=None)
                msg = 'Data should not have changed'
                assert nanallclose(A_native,
                                   A_none,
                                   rtol=1.0e-12,
                                   atol=1.0e-12), msg