def Classifier_LogisticRegression(X, y, resp1):
    nome = "Logistic_Regression"
    X_new, nomeFeature = selecao_feature(X, y, resp1)

    # split data into train and test sets
    seed = 100
    test_size = 0.2

    # separação treino - teste: 80 - 20
    X_train, X_test, y_train, y_test = train_test_split(X_new,
                                                        y,
                                                        test_size=test_size,
                                                        random_state=seed)

    # fit model no training data
    ## parametros do Modelo: https://xgboost.readthedocs.io/en/latest/python/python_api.html
    model = LogisticRegression()
    model.fit(X_train, y_train)

    # make predictions for test data
    start_time = utils.get_time()  # Tempo inicial
    y_pred = model.predict(X_test)
    predictions = [round(value) for value in y_pred]
    diff_time = utils.get_time_diff(start_time)  # Tempo final

    print_resultados(model, y_test, predictions, diff_time, X_test, nome,
                     nomeFeature)
Ejemplo n.º 2
0
def Classifier_Gradient_Boosting(X, y, resp1):
    nome = "Gradient_Boosting"
    X_new, nomeFeature = selecao_feature(X, y, resp1)

    # split data into train and test sets
    seed = 0
    test_size = 0.2
    n_estimators = 200

    # separação treino - teste: 80 - 20
    X_train, X_test, y_train, y_test = train_test_split(X_new,
                                                        y,
                                                        test_size=test_size,
                                                        random_state=seed)

    # fit model no training data
    #Parâmetros: https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.GradientBoostingClassifier.html
    model = GradientBoostingClassifier(loss='exponential',
                                       learning_rate=0.1,
                                       random_state=0,
                                       n_estimators=n_estimators)
    model.fit(X_train, y_train)

    # make predictions for test data
    start_time = utils.get_time()  # Tempo inicial
    y_pred = model.predict(X_test)
    predictions = [round(value) for value in y_pred]
    diff_time = utils.get_time_diff(start_time)  # Tempo final

    print_resultados(model, y_test, predictions, diff_time, X_test, nome,
                     nomeFeature)
Ejemplo n.º 3
0
def Classifier_KNN(X, y, resp1):
    nome = "KNN"
    X_new, nomeFeature = selecao_feature(X, y, resp1)

    # split data into train and test sets
    seed = 100
    test_size = 0.2

    # separação treino - teste: 80 - 20
    X_train, X_test, y_train, y_test = train_test_split(X_new,
                                                        y,
                                                        test_size=test_size,
                                                        random_state=seed)

    # fit model no training data
    model = KNeighborsClassifier(n_neighbors=3, metric='euclidean')
    model.fit(X_train, y_train)

    # make predictions for test data
    start_time = utils.get_time()  # Tempo inicial
    y_pred = model.predict(X_test)
    predictions = [round(value) for value in y_pred]
    diff_time = utils.get_time_diff(start_time)  # Tempo final

    print_resultados(model, y_test, predictions, diff_time, X_test, nome,
                     nomeFeature)
Ejemplo n.º 4
0
def SVM(X, y, resp1):
    nome = "SVM"
    X_new, nomeFeature = selecao_feature(X, y, resp1)

    # separação treino - teste: 80 - 20
    X_train, X_test, y_train, y_test = train_test_split(X_new,
                                                        y,
                                                        test_size=0.2,
                                                        random_state=0)

    # Treinamento e Predição
    classifier = svm.SVC(kernel='rbf', C=5, gamma=0.0001, probability=True)
    classifier.fit(X_train, y_train)
    start_time = utils.get_time()  # Tempo inicial
    y_pred = classifier.predict(X_test)
    diff_time = utils.get_time_diff(start_time)  # Tempo final

    print_resultados(classifier, y_test, y_pred, diff_time, X_test, nome,
                     nomeFeature)
Ejemplo n.º 5
0
def Random_Forest(X, y, resp1):
    nome = "Ramdom_Forest"
    X_new, nomeFeature = selecao_feature(X, y, resp1)

    # separação treino - teste: 80 - 20
    X_train, X_test, y_train, y_test = train_test_split(X_new,
                                                        y,
                                                        test_size=0.2,
                                                        random_state=0)

    # Treinamento e Predição
    # 20 árvores (com 100 árvores tem o mesmo resultado)
    classifier = RandomForestClassifier(n_estimators=200, random_state=0)
    classifier.fit(X_train, y_train)

    # Predict
    start_time = utils.get_time()  # Tempo inicial
    y_pred = classifier.predict(X_test)
    diff_time = utils.get_time_diff(start_time)  # Tempo final

    print_resultados(classifier, y_test, y_pred, diff_time, X_test, nome,
                     nomeFeature)