Ejemplo n.º 1
0
    def _create_new_weights_cube(self, cube, weights):
        """Create a cube to contain the output of the interpolation.
        It is currently assumed that the output weights matches the size
        of the input cube.

        Args:
            cube (iris.cube.Cube):
                Cube containing the coordinate information that will be used
                for setting up the new_weights_cube.
            weights (np.ndarray):
                Weights calculated following interpolation.

        Returns:
            new_weights_cube (iris.cube.Cube):
                Cube containing the output from the interpolation. This has
                the same shape as "cube", without the x and y dimensions.
        """
        cubelist = iris.cube.CubeList([])
        for cube_slice, weight in (zip(
                cube.slices_over(self.weighting_coord_name), weights)):
            sub_slice = cube_slice[..., 0, 0]
            sub_slice.remove_coord(sub_slice.coord(axis='x'))
            sub_slice.remove_coord(sub_slice.coord(axis='y'))
            sub_slice.data = np.ones(sub_slice.data.shape) * weight
            cubelist.append(sub_slice)
        new_weights_cube = (check_cube_coordinates(cube[..., 0, 0],
                                                   cubelist.merge_cube()))
        new_weights_cube.rename(self.weights_key_name)
        return new_weights_cube
Ejemplo n.º 2
0
    def _create_new_weights_cube(self, cube, weights):
        """Create a cube to contain the output of the interpolation.
        It is currently assumed that the output weights matches the size
        of the input cube.

        Args:
            cube (iris.cube.Cube):
                Cube containing the coordinate information that will be used
                for setting up the new_weights_cube.
            weights (numpy.ndarray):
                Weights calculated following interpolation.

        Returns:
            iris.cube.Cube:
                Cube containing the output from the interpolation. This has
                the same shape as "cube", without the x and y dimensions.
        """
        cubelist = iris.cube.CubeList([])
        for cube_slice, weight in zip(
            cube.slices_over(self.weighting_coord_name), weights
        ):
            sub_slice = cube_slice[..., 0, 0]
            sub_slice.data = np.ones(sub_slice.data.shape) * weight
            cubelist.append(sub_slice)

        # re-order dimension coordinates to match input cube
        new_weights_cube = check_cube_coordinates(
            cube[..., 0, 0], cubelist.merge_cube()
        )

        # remove all scalar coordinates that are not time-, model- or
        # blend-related
        dim_coords = new_weights_cube.coords(dim_coords=True)
        keep_coords = [
            "time",
            "forecast_period",
            "forecast_reference_time",
            MODEL_BLEND_COORD,
            MODEL_NAME_COORD,
            self.weighting_coord_name,
            self.config_coord_name,
        ]
        for coord in new_weights_cube.coords():
            if coord not in dim_coords and coord.name() not in keep_coords:
                new_weights_cube.remove_coord(coord)

        # remove attributes
        new_weights_cube.attributes = {}

        # rename cube
        new_weights_cube.rename(self.weights_key_name)
        new_weights_cube.units = cf_units.Unit("1")

        return new_weights_cube