Ejemplo n.º 1
0
def main():

    import argparse
    parser = argparse.ArgumentParser(
        description="imsitu VSRL. Training, evaluation and prediction.")
    parser.add_argument("--gpuid",
                        default=-1,
                        help="put GPU id > -1 in GPU mode",
                        type=int)
    #parser.add_argument("--command", choices = ["train", "eval", "resume", 'predict'], required = True)
    parser.add_argument('--resume_training',
                        action='store_true',
                        help='Resume training from the model [resume_model]')
    parser.add_argument('--resume_model',
                        type=str,
                        default='',
                        help='The model we resume')
    parser.add_argument('--verb_module',
                        type=str,
                        default='',
                        help='pretrained verb module')
    parser.add_argument('--role_module',
                        type=str,
                        default='',
                        help='pretrained verb module')
    parser.add_argument('--train_role',
                        action='store_true',
                        help='cnn fix, verb fix, role train from the scratch')
    parser.add_argument(
        '--finetune_verb',
        action='store_true',
        help='cnn fix, verb finetune, role train from the scratch')
    parser.add_argument(
        '--finetune_cnn',
        action='store_true',
        help='cnn finetune, verb finetune, role train from the scratch')
    parser.add_argument('--output_dir',
                        type=str,
                        default='./trained_models',
                        help='Location to output the model')
    parser.add_argument('--evaluate',
                        action='store_true',
                        help='Only use the testing mode')
    parser.add_argument('--test',
                        action='store_true',
                        help='Only use the testing mode')
    parser.add_argument('--dataset_folder',
                        type=str,
                        default='./imSitu',
                        help='Location of annotations')
    parser.add_argument('--imgset_dir',
                        type=str,
                        default='./resized_256',
                        help='Location of original images')
    parser.add_argument('--frcnn_feat_dir',
                        type=str,
                        help='Location of output from detectron')
    parser.add_argument('--batch_size', type=int, default=64)
    #todo: train role module separately with gt verbs

    args = parser.parse_args()

    batch_size = args.batch_size
    #lr = 5e-6
    lr = 0.0001
    lr_max = 5e-4
    lr_gamma = 0.1
    lr_step = 25
    clip_norm = 50
    weight_decay = 1e-4
    n_epoch = 500
    n_worker = 3

    #dataset_folder = 'imSitu'
    #imgset_folder = 'resized_256'
    dataset_folder = args.dataset_folder
    imgset_folder = args.imgset_dir

    train_set = json.load(open(dataset_folder + "/train_new_2000_all.json"))
    imsitu_roleq = json.load(open("imsitu_data/imsitu_questions_prev.json"))
    encoder = imsitu_encoder(train_set, imsitu_roleq)

    model = model_vgg_featextractor4ggnn.BaseModel(encoder, args.gpuid)

    # To group up the features

    train_set = imsitu_loader_resnet_featextract(imgset_folder, train_set,
                                                 model.train_preprocess())

    train_loader = torch.utils.data.DataLoader(train_set,
                                               batch_size=batch_size,
                                               shuffle=False,
                                               num_workers=n_worker)

    dev_set = json.load(open(dataset_folder + "/dev_new_2000_all.json"))
    dev_set = imsitu_loader_resnet_featextract(imgset_folder, dev_set,
                                               model.dev_preprocess())
    dev_loader = torch.utils.data.DataLoader(dev_set,
                                             batch_size=batch_size,
                                             shuffle=False,
                                             num_workers=n_worker)

    test_set = json.load(open(dataset_folder + "/test_new_2000_all.json"))
    test_set = imsitu_loader_resnet_featextract(imgset_folder, test_set,
                                                model.dev_preprocess())
    test_loader = torch.utils.data.DataLoader(test_set,
                                              batch_size=batch_size,
                                              shuffle=False,
                                              num_workers=n_worker)

    utils.set_trainable(model, False)
    '''if args.resume_training:
        print('Resume training from: {}'.format(args.resume_model))
        args.train_all = True
        if len(args.resume_model) == 0:
            raise Exception('[pretrained verb module] not specified')
        utils.load_net(args.resume_model, [model])'''

    #load verb and role modules
    utils.load_net(args.verb_module, [model.conv_verbs], ['conv'])
    utils.load_net(args.role_module, [model.conv_nouns], ['conv'])

    if args.gpuid >= 0:
        model.cuda()
    extract_features(model, [train_loader, dev_loader, test_loader],
                     args.gpuid)
    '''print('rechecking')
def main():

    import argparse
    parser = argparse.ArgumentParser(description="imsitu VSRL. Training, evaluation and prediction.")
    parser.add_argument("--gpuid", default=-1, help="put GPU id > -1 in GPU mode", type=int)
    #parser.add_argument("--command", choices = ["train", "eval", "resume", 'predict'], required = True)
    parser.add_argument('--resume_training', action='store_true', help='Resume training from the model [resume_model]')
    parser.add_argument('--resume_model', type=str, default='', help='The model we resume')
    parser.add_argument('--verb_module', type=str, default='', help='pretrained verb module')
    parser.add_argument('--train_role', action='store_true', help='cnn fix, verb fix, role train from the scratch')
    parser.add_argument('--finetune_verb', action='store_true', help='cnn fix, verb finetune, role train from the scratch')
    parser.add_argument('--finetune_cnn', action='store_true', help='cnn finetune, verb finetune, role train from the scratch')
    parser.add_argument('--output_dir', type=str, default='./trained_models', help='Location to output the model')
    parser.add_argument('--evaluate', action='store_true', help='Only use the testing mode')
    parser.add_argument('--test', action='store_true', help='Only use the testing mode')
    parser.add_argument('--dataset_folder', type=str, default='./imSitu', help='Location of annotations')
    parser.add_argument('--imgset_dir', type=str, default='./resized_256', help='Location of original images')
    parser.add_argument('--frcnn_feat_dir', type=str, help='Location of output from detectron')

    parser.add_argument('--batch_size', type=int, default=64)
    #todo: train role module separately with gt verbs

    args = parser.parse_args()

    batch_size = args.batch_size
    #lr = 5e-6
    lr = 0.0001
    lr_max = 5e-4
    lr_gamma = 0.1
    lr_step = 25
    clip_norm = 50
    weight_decay = 1e-4
    n_epoch = 500
    n_worker = 3

    #dataset_folder = 'imSitu'
    #imgset_folder = 'resized_256'
    dataset_folder = args.dataset_folder
    imgset_folder = args.imgset_dir

    print('model spec :, top down att with role q ')

    train_set = json.load(open(dataset_folder + "/train_new_2000.json"))
    imsitu_roleq = json.load(open("imsitu_data/imsitu_questions_prev.json"))
    encoder = imsitu_encoder(train_set, imsitu_roleq)

    model = model_ft_cnn4imsitu.BaseModel(encoder, args.gpuid)

    # To group up the features
    train_set = imsitu_loader_objects(imgset_folder, train_set, encoder, model.train_preprocess())

    train_loader = torch.utils.data.DataLoader(train_set, batch_size=batch_size, shuffle=True, num_workers=n_worker)

    dev_set = json.load(open(dataset_folder +"/dev_new_2000.json"))
    dev_set = imsitu_loader_objects(imgset_folder, dev_set, encoder, model.dev_preprocess())
    dev_loader = torch.utils.data.DataLoader(dev_set, batch_size=batch_size, shuffle=True, num_workers=n_worker)

    test_set = json.load(open(dataset_folder +"/test.json"))
    test_set = imsitu_loader_objects(imgset_folder, test_set, encoder, model.dev_preprocess())
    test_loader = torch.utils.data.DataLoader(test_set, batch_size=64, shuffle=True, num_workers=n_worker)

    traindev_set = json.load(open(dataset_folder +"/dev.json"))
    traindev_set = imsitu_loader_objects(imgset_folder, traindev_set, encoder, model.dev_preprocess())
    traindev_loader = torch.utils.data.DataLoader(traindev_set, batch_size=8, shuffle=True, num_workers=n_worker)


    if not os.path.exists(args.output_dir):
        os.mkdir(args.output_dir)

    torch.manual_seed(1234)
    if args.gpuid >= 0:
        #print('GPU enabled')
        model.cuda()
        torch.cuda.manual_seed(1234)
        torch.backends.cudnn.deterministic = True

    utils.set_trainable(model, True)
    utils.set_trainable(model.conv.vgg_features, False)
    model_name = 'train_full'
    optimizer = torch.optim.SGD([
        {'params': model.conv.conv_exp.parameters()},
        {'params': model.conv.vgg_classifier.parameters()}],
                                   lr=1e-3)

    #optimizer = torch.optim.Adam(model.parameters(), lr=lr, weight_decay=weight_decay)
    scheduler = torch.optim.lr_scheduler.StepLR(optimizer, step_size=20, gamma=0.1)
    #gradient clipping, grad check
    #scheduler = torch.optim.lr_scheduler.ExponentialLR(optimizer, gamma=0.9)

    if args.evaluate:
        top1, top5, val_loss = eval(model, dev_loader, encoder, args.gpuid, write_to_file = True)

        top1_avg = top1.get_average_results_nouns()
        top5_avg = top5.get_average_results_nouns()

        avg_score = top1_avg["verb"] + top1_avg["value"] + top1_avg["value-all"] + top5_avg["verb"] + \
                    top5_avg["value"] + top5_avg["value-all"] + top5_avg["value*"] + top5_avg["value-all*"]
        avg_score /= 8

        print ('Dev average :{:.2f} {} {}'.format( avg_score*100,
                                                   utils.format_dict(top1_avg,'{:.2f}', '1-'),
                                                   utils.format_dict(top5_avg, '{:.2f}', '5-')))

        #write results to csv file
        role_dict = top1.role_dict
        fail_val_all = top1.value_all_dict
        pass_val_dict = top1.vall_all_correct

        with open('role_pred_data.json', 'w') as fp:
            json.dump(role_dict, fp, indent=4)

        with open('fail_val_all.json', 'w') as fp:
            json.dump(fail_val_all, fp, indent=4)

        with open('pass_val_all.json', 'w') as fp:
            json.dump(pass_val_dict, fp, indent=4)

        print('Writing predictions to file completed !')

    elif args.test:
        top1, top5, val_loss = eval(model, test_loader, encoder, args.gpuid, write_to_file = True)

        top1_avg = top1.get_average_results_nouns()
        top5_avg = top5.get_average_results_nouns()

        avg_score = top1_avg["verb"] + top1_avg["value"] + top1_avg["value-all"] + top5_avg["verb"] + \
                    top5_avg["value"] + top5_avg["value-all"] + top5_avg["value*"] + top5_avg["value-all*"]
        avg_score /= 8

        print ('Test average :{:.2f} {} {}'.format( avg_score*100,
                                                    utils.format_dict(top1_avg,'{:.2f}', '1-'),
                                                    utils.format_dict(top5_avg, '{:.2f}', '5-')))


    else:

        print('Model training started!')
        train(model, train_loader, dev_loader, traindev_loader, optimizer, scheduler, n_epoch, args.output_dir, encoder, args.gpuid, clip_norm, lr_max, model_name, args)