Ejemplo n.º 1
0
def morph_snakes(data,
                 mask,
                 slice=None,
                 scale=0.5,
                 alpha=1000,
                 sigma=1,
                 smoothing_ls=1,
                 threshold=0.3,
                 balloon=1,
                 max_iters=50,
                 show=False,
                 show_now=True):
    data_o = data.copy()
    mask_o = mask.copy()
    if scale != 1:
        # data = skitra.rescale(data, scale=scale, preserve_range=True).astype(np.uint8)
        # mask = skitra.rescale(mask, scale=scale, preserve_range=True).astype(np.bool)
        data = tools.resize3D(data, scale, sliceId=0)
        mask = tools.resize3D(mask, scale, sliceId=0)

    gI = morphsnakes.gborders(data, alpha=alpha, sigma=sigma)
    # Morphological GAC. Initialization of the level-set.
    mgac = morphsnakes.MorphGAC(gI,
                                smoothing=smoothing_ls,
                                threshold=threshold,
                                balloon=balloon)
    mgac.levelset = mask
    mgac.run(iterations=max_iters)
    seg = mgac.levelset

    if scale != 1:
        # data = tools.resize_ND(data, shape=orig_shape)
        # mask = tools.resize_ND(mask, shape=orig_shape)
        seg = tools.resize_ND(seg, shape=data_o.shape)

    if show:
        tools.visualize_seg(data_o,
                            seg,
                            mask_o,
                            slice=slice,
                            title='morph snakes',
                            show_now=show_now)
    return data, mask, seg
Ejemplo n.º 2
0
def lankton_ls(im,
               mask,
               method='sfm',
               slice=None,
               max_iters=1000,
               rad=10,
               alpha=0.1,
               scale=1.,
               show=False,
               show_now=True):
    if scale != 1:
        # im = skitra.rescale(im, scale=scale, preserve_range=True).astype(np.uint8)
        # mask = skitra.rescale(mask, scale=scale, preserve_range=True).astype(np.bool)
        im = tools.resize_ND(im, scale=scale).astype(np.uint8)
        mask = tools.resize_ND(mask, scale=scale).astype(np.bool)

    seg = lankton_lls.run(
        im,
        mask,
        method='sfm',
        max_iter=1000,
        rad=rad,
        alpha=alpha,
        # slice=slice, show=show, show_now=show_now)
        slice=slice,
        show=True,
        show_now=True)

    if show:
        tools.visualize_seg(data,
                            mask,
                            seg,
                            slice=slice,
                            title='morph snakes',
                            show_now=show_now)
    return im, mask, seg
Ejemplo n.º 3
0
    min_diff = 1
    alpha = 0.9
    scale = 0.5
    max_iters = 100
    smoothing = True
    show = True
    show_now = False

    _, seeds = tools.initialize_graycom(data, slice=slice_ind, show=show, show_now=show_now)
    # seeds = tools.eroding3D(seeds, np.ones((3, 3))).astype(np.uint8)
    seeds = tools.morph_ND(seeds, 'erosion', selem=np.ones((3, 3)), slicewise=True, sliceId=0).astype(np.uint8)

    plt.figure()
    plt.subplot(121), plt.imshow(data[slice_ind,...], 'gray')
    plt.subplot(122), plt.imshow(seeds[slice_ind,...], 'jet')
    plt.show()

    lrg = LoReGro(data, seeds, ball_r_out=ball_r_out, ball_r=ball_r, min_diff=min_diff, alpha=alpha,
                  scale=scale, max_iters=max_iters, smoothing=smoothing, show=show, show_now=show_now)
    lrg.run_segmentation()

    seg = lrg.segmentation

    # plt.figure()
    # plt.suptitle('LoReGro segmentation')
    # plt.subplot(131), plt.imshow(data, 'gray'), plt.title('input')
    # plt.subplot(132), plt.imshow(seeds, 'jet'), plt.title('seeds')
    # plt.subplot(133), plt.imshow(seg[0,...].astype(np.uint8), 'gray'), plt.title('segmentation')
    # plt.show()
    tools.visualize_seg(data, seg[0,...], mask=seeds, title='loregro')
Ejemplo n.º 4
0
def run_param_tuning_morphsnakes(im_in,
                                 gt_mask,
                                 slice_ind,
                                 smoothing=True,
                                 scale=0.5,
                                 init_scale=0.5):
    if smoothing:
        im_in = tools.smoothing(im_in, sigmaSpace=10, sigmaColor=10, sliceId=0)

    im = im_in.copy()
    mask_init = tools.initialize_graycom(im,
                                         slice,
                                         distances=[
                                             1,
                                         ],
                                         scale=init_scale)

    # parameters tuning ---------------------------------------------------------------
    alpha_v = (10, 100, 500)
    sigma_v = (1, 5)
    threshold_v = (0.1, 0.5, 0.9)
    balloon_v = (1, 2, 4)

    method = 'morphsnakes'
    # create workbook for saving the resulting pracision, recall and f-measure
    workbook = xlsxwriter.Workbook(
        '/home/tomas/Dropbox/Data/liver_segmentation/%s/%s.xlsx' %
        (method, method))
    worksheet = workbook.add_worksheet()
    # Add a bold format to use to highlight cells.
    bold = workbook.add_format({'bold': True})
    # green = workbook.add_format({'bg_color': '#C6EFCE'})
    worksheet.write(0, 0, 'F-MEASURE', bold)
    worksheet.write(0, 1, 'PRECISION', bold)
    worksheet.write(0, 2, 'RECALL', bold)
    worksheet.write(0, 4, 'alpha', bold)
    worksheet.write(0, 5, 'sigma', bold)
    worksheet.write(0, 6, 'threshold', bold)
    worksheet.write(0, 7, 'ballon', bold)
    worksheet.write(0, 8, 'scale', bold)
    worksheet.write(0, 9, 'scale_init', bold)

    params_tune = []
    for p in itertools.product(alpha_v, sigma_v, threshold_v, balloon_v):
        params_tune.append(p)
    # for i, (alpha, sigma, threshold, balloon) in enumerate(itertools.product(alpha_v, sigma_v, threshold_v, balloon_v)):
    for i in range(len(params_tune)):
        alpha, sigma, threshold, balloon = params_tune[i]
        # threshold = 0.9
        # balloon = 4
        print '\n  --  it #%i/%i  --' % (i + 1, len(params_tune))
        print 'Working with alpha=%i, sigma=%i, threshold=%.1f, balloon=%i' % (
            alpha, sigma, threshold, balloon)
        params = {
            'alpha': alpha,
            'sigma': sigma,
            'smoothing_ls': 1,
            'threshold': threshold,
            'balloon': balloon,
            'max_iters': 1000,
            'scale': scale,
            'init_scale': init_scale,
            'smoothing': False,
            'save_fig': False,
            'show': True,
            'show_now': False
        }
        im, mask, seg = run(im_in,
                            slice=slice_ind,
                            mask=mask_init,
                            method=method,
                            **params)

        # print 'shapes 1: im={}, mask={}, seg={}'.format(im.shape, mask.shape, seg.shape)
        if im.shape != im_in.shape:
            im = tools.resize_ND(im, shape=im_in.shape)
        if mask.shape != gt_mask.shape:
            mask = tools.resize_ND(mask, shape=gt_mask.shape)
        if seg.shape != gt_mask.shape:
            seg = tools.resize_ND(seg, shape=gt_mask.shape)
        # print 'shapes 2: im={}, mask={}, seg={}'.format(im.shape, mask.shape, seg.shape)

        # calculating precision, recall and f_measure
        precision, recall, f_measure = calc_statistics(seg, gt_mask)
        # print 'shapes 3: im={}, mask={}, seg={}'.format(im.shape, mask.shape, seg.shape)

        # saving data
        datap = {'im': im, 'mask': mask, 'seg': seg, 'params': params}
        dirname = '/home/tomas/Dropbox/Data/liver_segmentation/%s/' % method
        dataname = '%s_al%i_si%i_th%s_ba%i.pklz' % (
            method, alpha, sigma, str(threshold).replace('.', ''), balloon)
        f = gzip.open(os.path.join(dirname, dataname), 'w')
        pickle.dump(datap, f)
        f.close()

        # saving results
        cols = [0, 1, 2, 4, 5, 6, 7, 8, 9]
        items = (f_measure, precision, recall, alpha, sigma, threshold,
                 balloon, params['scale'], params['init_scale'])
        for j, it in enumerate(items):
            worksheet.write(i + 1, cols[j], it)

        # creating visualization
        fig = tools.visualize_seg(im,
                                  seg,
                                  mask,
                                  slice=slice_ind,
                                  title=method,
                                  for_save=True,
                                  show_now=False)
        fname = '/home/tomas/Dropbox/Data/liver_segmentation/%s/%s_al%i_si%i_th%s_ba%i.png' \
                % (method, method, alpha, sigma, str(threshold).replace('.', ''), balloon)
        fig.savefig(fname)
        plt.close('all')

    workbook.close()
Ejemplo n.º 5
0
    plt.subplot(121), plt.imshow(data[slice_ind, ...], 'gray')
    plt.subplot(122), plt.imshow(seeds[slice_ind, ...], 'jet')
    # plt.show()

    lrg = LoReGro(data,
                  seeds,
                  ball_r_out=ball_r_out,
                  ball_r=ball_r,
                  min_diff=min_diff,
                  alpha=alpha,
                  scale=scale,
                  max_iters=max_iters,
                  smoothing=smoothing,
                  show=show,
                  show_now=show_now)
    lrg.run_segmentation()

    seg = lrg.segmentation

    # plt.figure()
    # plt.suptitle('LoReGro segmentation')
    # plt.subplot(131), plt.imshow(data, 'gray'), plt.title('input')
    # plt.subplot(132), plt.imshow(seeds, 'jet'), plt.title('seeds')
    # plt.subplot(133), plt.imshow(seg[0,...].astype(np.uint8), 'gray'), plt.title('segmentation')
    # plt.show()
    # tools.visualize_seg(data, seg[0,...], mask=seeds, title='loregro')
    tools.visualize_seg(data,
                        seg,
                        mask=seeds,
                        slice=slice_ind,
                        title='loregro')
Ejemplo n.º 6
0
def segmentation_stats(data_struc, scale=1, smoothing=True):
    # fnames = load_data(datadir)
    # fnames = ['/home/tomas/Dropbox/Data/medical/dataset/180_arterial-.pklz',]

    # creating workbook
    workbook = xlsxwriter.Workbook('/home/tomas/Dropbox/Data/liver_segmentation/final_alg/liver_seg_stats.xlsx')
    worksheet = workbook.add_worksheet()
    # Add a bold format to use to highlight cells.
    bold = workbook.add_format({'bold': True})
    # green = workbook.add_format({'bg_color': '#C6EFCE'})
    col_gc_fmea = 3
    col_gc_prec = 6
    col_gc_rec = 9
    col_ls_fmea = 4
    col_ls_prec = 7
    col_ls_rec = 10
    cols_gc = (3, 6, 9)
    cols_ls = (4, 7, 10)
    start_row = 2
    worksheet.write(0, 0, 'DATA', bold)
    worksheet.write(0, 1, 'slice', bold)
    worksheet.write(0, 3, 'F-MEASURE', bold)
    worksheet.write(0, 6, 'PRECISION', bold)
    worksheet.write(0, 9, 'RECALL', bold)

    worksheet.write(1, col_gc_fmea, 'Grow Cut', bold)
    worksheet.write(1, col_ls_fmea, 'Level Sets', bold)
    worksheet.write(1, col_gc_prec, 'Grow Cut', bold)
    worksheet.write(1, col_ls_prec, 'Level Sets', bold)
    worksheet.write(1, col_gc_rec, 'Grow Cut', bold)
    worksheet.write(1, col_ls_rec, 'Level Sets', bold)

    # loading data
    data_fnames = []
    data_slices = []
    for name, num in data_struc:
        for i in num:
            data_fnames.append(name)
            data_slices.append(i)
    n_imgs = len(data_fnames)
    for i, (data_fname, slice) in enumerate(zip(data_fnames, data_slices)):
        fname = data_fname.split('/')[-1].split('.')[0]
        print '#%i/%i, %s [%i]: ' % (i + 1, n_imgs, fname, slice),
        data, gt_mask, voxel_size = tools.load_pickle_data(data_fname)

        data = data[slice,...]
        gt_mask = gt_mask[slice,...]
        print 'windowing ...',
        data = tools.windowing(data)
        shape_orig = data.shape
        data_o = data.copy()

        # plt.figure()
        # plt.imshow(data, 'gray', vmin=0, vmax=255, interpolation='nearest')
        # plt.show()

        if scale != 1:
            print 'resizing ...',
            data = tools.resize_ND(data, scale=scale).astype(np.uint8)

        if smoothing:
            print 'smoothing ...',
            data = tools.smoothing(data)

        print 'gc ...',
        blob, seg_gc = coarse_segmentation(data, clear_border=False, show=False, verbose=False)
        print 'ls ...',
        seg_ls = segmentation_refinement(data, blob, show=False, verbose=False)

        if seg_gc.shape != gt_mask.shape:
            seg_gc = tools.resize_ND(seg_gc, shape=shape_orig)
        if seg_ls.shape != gt_mask.shape:
            seg_ls = tools.resize_ND(seg_ls, shape=shape_orig)

        # computing statistics
        print 'stats ...',
        precision_gc, recall_gc, f_measure_gc = ac.calc_statistics(blob, gt_mask)
        precision_ls, recall_ls, f_measure_ls = ac.calc_statistics(seg_ls, gt_mask)

        # writing statistics
        print 'writing ...',
        items = (f_measure_gc, precision_gc, recall_gc, f_measure_ls, precision_ls, recall_ls)
        worksheet.write(start_row + i, 0, fname)
        worksheet.write(start_row + i, 1, slice)
        for it, col in zip(items, cols_gc + cols_ls):
            worksheet.write(start_row + i, col, it)
        print 'done'

        fig = tools.visualize_seg(data_o, seg_ls, mask=seg_gc, title=fname, show_now=False, for_save=True)
        out_fname = '/home/tomas/Dropbox/Data/liver_segmentation/final_alg/%s_sl_%i.png' % (fname, slice)
        fig.savefig(out_fname)
        plt.close('all')

        print '\t\tfmea = %.3f -> %.3f, prec = %.3f -> %.3f, rec = %.3f -> %.3f' %\
              (f_measure_gc, f_measure_ls, precision_gc, precision_ls, recall_gc, recall_ls)
Ejemplo n.º 7
0
    else:
        mask_res = mask_sfm
    stats_sfm = seg_stats(mask, mask_res)

    if mask.shape != mask_morph.shape:
        mask_res = cv2.resize(mask_morph.astype(np.uint8), mask.shape[::-1])
    else:
        mask_res = mask_morph
    stats_morph = seg_stats(mask, mask_res)

    # tp_sfm = 100
    # tp_morph = 100

    tools.visualize_seg(data,
                        mask,
                        mask,
                        slice=None,
                        title='ground thruth',
                        show_now=False)
    tools.visualize_seg(
        data_sfm,
        mask_sfm,
        sfm,
        slice=None,
        title='sfm, TP=%.1f, TN=%.1f, FP=%.1f, FN=%.1f' %
        (stats_sfm.tp, stats_sfm.tn, stats_sfm.fp, stats_sfm.fn),
        show_now=False)
    tools.visualize_seg(
        data_morph,
        mask_morph,
        morph,
        slice=None,