Ejemplo n.º 1
0
 def identify(self,test_img):
     """Find the best match from the test set to the provided image."""
     
     norm_test = test_img.flat - self.data_mean
     test_coeffs = N.dot(self.utt,norm_test)
     diff2 = ((self.proj_c - test_coeffs)**2).sum(axis=1)
     minidx = diff2.argmin()
     best_err = diff2[minidx]
     imshow2(test_img,self.image_coll.images[minidx],
             labels = ('Test Image','Best Match: %d' % minidx))
     P.title('L2 error: %.2e' % best_err)
Ejemplo n.º 2
0
    def identify(self, test_img):
        """Find the best match from the test set to the provided image."""

        norm_test = test_img.flat - self.data_mean
        test_coeffs = N.dot(self.utt, norm_test)
        diff2 = ((self.proj_c - test_coeffs)**2).sum(axis=1)
        minidx = diff2.argmin()
        best_err = diff2[minidx]
        imshow2(test_img,
                self.image_coll.images[minidx],
                labels=('Test Image', 'Best Match: %d' % minidx))
        P.title('L2 error: %.2e' % best_err)
Ejemplo n.º 3
0
def verify(test_img, key):
    """Verify visually that a provided image corresponds to a specified image
    in the training set.

    Two images, the provided test image and the training image 'key', are
    displayed side-by-side, along with the l2-norm error.  Based on this
    information, the user can visually verify that they are the same."""

    ref_coeffs = proj_c[key]
    norm_test = test_img.flat - data_mean
    test_coeffs = N.dot(utt, norm_test)
    l2_err = N.linalg.norm(test_coeffs - ref_coeffs, 2)
    imshow2(imtrain[key], test_img, labels=('Reference Image', 'Test Image'))
    P.title('L2 coefficient error: %.2e' % l2_err)
Ejemplo n.º 4
0
def verify(test_img,key):
    """Verify visually that a provided image corresponds to a specified image
    in the training set.

    Two images, the provided test image and the training image 'key', are
    displayed side-by-side, along with the l2-norm error.  Based on this
    information, the user can visually verify that they are the same."""

    ref_coeffs = proj_c[key]
    norm_test = test_img.flat - data_mean
    test_coeffs = N.dot(utt,norm_test)
    l2_err = N.linalg.norm(test_coeffs-ref_coeffs,2)
    imshow2(imtrain[key],test_img,
            labels = ('Reference Image','Test Image'))        
    P.title('L2 coefficient error: %.2e' % l2_err)
Ejemplo n.º 5
0
def identify(test_img):
    """Try to find a match for test_img from the training set."""

    # Normalise data, compute projections into eigenspace
    norm_test = test_img.flat - data_mean
    test_coeffs = N.dot(utt,norm_test)

    # Find closest match
    diff2 = ((proj_c - test_coeffs)**2).sum(axis=1)
    minidx = diff2.argmin()
    best_err = diff2[minidx]

    # Display the matching face
    imshow2(test_img,imtrain.images[minidx],
            labels = ('Test Image','Best Match: %d' % minidx))
    P.title('L2 coefficient error: %.2e' % best_err)
Ejemplo n.º 6
0
def identify(test_img):
    """Try to find a match for test_img from the training set."""

    # Normalise data, compute projections into eigenspace
    norm_test = test_img.flat - data_mean
    test_coeffs = N.dot(utt, norm_test)

    # Find closest match
    diff2 = ((proj_c - test_coeffs)**2).sum(axis=1)
    minidx = diff2.argmin()
    best_err = diff2[minidx]

    # Display the matching face
    imshow2(test_img,
            imtrain.images[minidx],
            labels=('Test Image', 'Best Match: %d' % minidx))
    P.title('L2 coefficient error: %.2e' % best_err)
Ejemplo n.º 7
0
def identify(test_img):
    """Try to find a match for test_img from the training set."""

    # Normalise data, compute projections into eigenspace

    XXX
    
    # Find closest match
    diff2 = ((proj_c - test_coeffs)**2).sum(axis=1) # this is correct.
    
    minidx = # XXX Find the index of the minimum in diff2 (look for the argmin
              # method)
              
    best_err = # XXX And read the actual value off  diff2 using this index:

    # Display the matching face
    imshow2(test_img,imtrain.images[minidx],
            labels = ('Test Image','Best Match: %d' % minidx))
    P.title('L2 coefficient error: %.2e' % best_err)
Ejemplo n.º 8
0
def verify(test_img,key):
    """Verify visually that a provided image corresponds to a specified image
    in the training set.

    Two images, the provided test image and the training image 'key', are
    displayed side-by-side, along with the l2-norm error.  Based on this
    information, the user can visually verify that they are the same."""

    # Compute the L2 error between the coefficients of the reference image:
    ref_coeffs = proj_c[key]
    # and the coefficients for your test image, which you must first normalize
    # by removing data_mean from the flattened version of test_img:

    norm_test = # XXX
    
    test_coeffs = # XXX
    l2_err = # XXX Look at N.linalg.norm for L2 vector norms

    imshow2(imtrain[key],test_img,
            labels = ('Reference Image','Test Image'))        
    P.title('L2 coefficient error: %.2e' % l2_err)