Ejemplo n.º 1
0
    def testPolicy(self,
                   symbol="JPM",
                   sd=dt.datetime(2008, 1, 1),
                   ed=dt.datetime(2009, 12, 31),
                   sv=100000):
        symbols = [symbol]

        stock_price, sma, p_to_sma = indicators.price_sma(start_date=sd,
                                                          end_date=ed,
                                                          symbols=symbols)
        rsi = indicators.rsi(start_date=sd, end_date=ed, symbols=symbols)
        mfi = indicators.mfi(start_date=sd, end_date=ed, symbols=symbols)
        vix = indicators.vix(start_date=sd, end_date=ed, symbols=symbols)

        portfolio = stock_price.copy()
        portfolio.iloc[:, :] = np.nan
        # print '======begining portfolio====\n', portfolio
        # print portfolio

        curr_state = 'neutral'
        long_entry = []
        long_exit = []
        short_entry = []
        short_exit = []

        for i in range(len(portfolio)):
            # print curr_state
            if (rsi.iloc[i, 0] < 30) & (p_to_sma.iloc[i, 0] < 1) & (
                    curr_state != 'long') & (vix.iloc[i, 0] < 50):
                portfolio.iloc[i, 0] = 1000
                curr_state = 'long'
                long_entry.append(portfolio.iloc[i:].index[0])

            elif (mfi.iloc[i, 0] > 70) & (p_to_sma.iloc[i, 0] > 1) & (
                    curr_state != 'short') & (vix.iloc[i, 0] > 20):
                portfolio.iloc[i, 0] = -1000
                curr_state = 'short'
                short_entry.append(portfolio.iloc[i:].index[0])

            if (rsi.iloc[i, 0] >= 55) & (curr_state == 'long'):
                portfolio.iloc[i, 0] = 0
                curr_state = 'neutral'
                long_exit.append(portfolio.iloc[i:].index[0])

            elif (mfi.iloc[i, 0] <= 45) & (curr_state == 'short'):
                portfolio.iloc[i, 0] = 0
                curr_state = 'neutral'
                short_exit.append(portfolio.iloc[i:].index[0])

        portfolio.fillna(method='ffill', inplace=True)
        portfolio.fillna(0, inplace=True)
        # print '======end portfolio====\n', portfolio
        df_trade = portfolio - portfolio.shift(1)
        df_trade.iloc[0] = portfolio.iloc[0]
        # print '=====df_ttrade=====\n', df_trade
        return df_trade, long_entry, long_exit, short_entry, short_exit
    def addEvidence(self, symbol="IBM", \
                    sd=dt.datetime(2008, 1, 1), \
                    ed=dt.datetime(2009, 1, 1), \
                    sv=10000):

        # stock_older_days = 30
        symbols = [symbol]
        prices, sma, p_to_sma = indicators.price_sma(start_date=sd, end_date=ed, symbols=symbols)
        prices.columns = ['Price']
        sma.columns = ['sma']
        p_to_sma.columns = ['p/sma']

        rsi = indicators.rsi(start_date=sd, end_date=ed, symbols=symbols)
        mfi = indicators.mfi(start_date=sd, end_date=ed, symbols=symbols)
        vix = indicators.vix(start_date=sd, end_date=ed, symbols=symbols)
        rsi.columns = ['RSI']
        mfi.columns = ['MFI']
        vix.columns = ['VIX']

        portfolio = prices.copy()
        portfolio.iloc[:, :] = np.nan

        Xtrain = pd.concat([p_to_sma, rsi, mfi, vix], axis=1)
        Xtrain.fillna(value=0, inplace=True)
        # print '=========Xtrain=======\n'
        # print Xtrain
        date_index = Xtrain.index
        trainX = Xtrain.values[:, 1:]
        # print '=========trainX=======\n'
        # print trainX

        self.N = 7
        nday_rt = prices.shift(-self.N) / prices - 1.0
        pd.set_option('display.max_rows', 1000)
        # print 'n days return: '
        # print nday_rt
        # print
        nday_rt[nday_rt > 0] = prices.shift(-self.N) / (prices * (1.0 + self.impact)) - 1.0
        nday_rt[nday_rt < 0] = prices.shift(-self.N) / (prices * (1.0 - self.impact)) - 1.0
        # print 'n days return: '
        # print nday_rt
        # print
        yvalues = nday_rt.copy()
        yvalues.iloc[:, :] = 0

        # go long when return is larger than 3%, go short when return is lower than -3%
        threshold = 0.03
        yvalues[nday_rt >= threshold] = 1
        yvalues[nday_rt <= -threshold] = -1
        # print xvalues == 0
        yvalues[trainX == 0] = 0
        trainY = np.array(yvalues)
        self.learner.addEvidence(trainX, trainY)
    def addEvidence(self, symbol="IBM", \
                    sd=dt.datetime(2008, 1, 1), \
                    ed=dt.datetime(2009, 1, 1), \
                    sv=10000):

        # stock_older_days = 30
        symbols = [symbol]
        prices, sma, p_to_sma = indicators.price_sma(start_date=sd,
                                                     end_date=ed,
                                                     symbols=symbols)
        prices.columns = ['Price']
        sma.columns = ['sma']
        p_to_sma.columns = ['p/sma']

        rsi = indicators.rsi(start_date=sd, end_date=ed, symbols=symbols)
        mfi = indicators.mfi(start_date=sd, end_date=ed, symbols=symbols)
        vix = indicators.vix(start_date=sd, end_date=ed, symbols=symbols)
        rsi.columns = ['RSI']
        mfi.columns = ['MFI']
        vix.columns = ['VIX']

        portfolio = prices.copy()
        portfolio.iloc[:, :] = np.nan

        Xtrain = pd.concat([p_to_sma, rsi, mfi, vix], axis=1)
        Xtrain.fillna(value=0, inplace=True)
        # print '=========Xtrain=======\n'
        # print Xtrain
        date_index = Xtrain.index
        Xtrain = Xtrain.values[:, 1:]
        # print '=========trainX=======\n'
        # print trainX

        Ytrain = (prices.shift(-self.lookback) /
                  prices) - 1  # Ytrain is 14 day return
        # print '=========Ytrain=======\n', Ytrain
        Ytrain = Ytrain.values
        # Ytrain.nan_to_num(0, copy=True)shift
        # print '=========Ytrain=======\n', Ytrain
        YBUY = 0.03
        YSELL = -0.03
        for i in range(len(Ytrain)):
            if Ytrain[i] > YBUY:
                Ytrain[i] = 1
            elif Ytrain[i] < YSELL:
                Ytrain[i] = -1
            else:
                Ytrain[i] = 0
        # print '=========Ytrain=======\n', Ytrain
        # print 'self.learner_1=======\n', self.learner_1
        self.learner.addEvidence(Xtrain, Ytrain)
        self.Y_in = self.learner.query(Xtrain)
    def testPolicy(self, symbol="IBM", \
                   sd=dt.datetime(2009, 1, 1), \
                   ed=dt.datetime(2010, 1, 1), \
                   sv=10000):

        # stock_older_days = 30
        symbols = [symbol]
        prices, sma, p_to_sma = indicators.price_sma(start_date=sd,
                                                     end_date=ed,
                                                     symbols=symbols)
        prices.columns = ['Price']
        sma.columns = ['sma']
        p_to_sma.columns = ['p/sma']

        rsi = indicators.rsi(start_date=sd, end_date=ed, symbols=symbols)
        mfi = indicators.mfi(start_date=sd, end_date=ed, symbols=symbols)
        vix = indicators.vix(start_date=sd, end_date=ed, symbols=symbols)
        rsi.columns = ['RSI']
        mfi.columns = ['MFI']
        vix.columns = ['VIX']

        portfolio = prices.copy()
        portfolio.iloc[:, :] = np.nan

        Xtrain = pd.concat([p_to_sma, rsi, mfi, vix], axis=1)
        Xtrain.fillna(value=0, inplace=True)
        # print '=========Xtrain=======\n', Xtrain

        trading_days = Xtrain.index
        Xtest = Xtrain.values[:, 1:]
        # print '=========Xtest=======\n', Xtest

        triggers = self.learner.query(Xtest)
        # print '==========triggers====\n', triggers
        triggers = pd.DataFrame(triggers[0], index=trading_days)
        # use this for bag learner: triggers = pd.DataFrame(triggers[0], index=trading_days)

        status = 'cash'
        trades = prices.copy()
        trades.values[:, :] = 0  # set them all to nothing
        total_triggers = triggers.shape[0]
        trading_days = list(prices.index)
        j = 0

        for i in range(total_triggers):
            # option = triggers.ix[i, symbol][0]
            option = triggers.ix[i, 0]
            gap = trading_days.index(triggers.index[i]) - trading_days.index(
                triggers.index[j])
            if status == 'cash':
                if option == 1.0:
                    trades.ix[triggers.index[i], :] = 1000
                    status = 'long'
                    j = i
                elif option == -1.0:
                    trades.ix[triggers.index[i], :] = -1000
                    status = 'short'
                    j = i
            elif status == 'long':
                if (option == 0.0) & (gap >= self.lookback):
                    trades.ix[triggers.index[i], :] = -1000
                    status = 'cash'
                    j = i
                elif (option == -1.0) & (gap >= self.lookback):
                    trades.ix[triggers.index[i], :] = -2000
                    status = 'short'
                    j = i
            elif status == 'short':
                if (option == 0.0) & (gap >= self.lookback):
                    trades.ix[triggers.index[i], :] = 1000
                    status = 'cash'
                    j = i
                elif (option == 1.0) & (gap >= self.lookback):
                    trades.ix[triggers.index[i], :] = 2000
                    status = 'long'
                    j = i

        if self.verbose: print type(trades)  # it better be a DataFrame!
        if self.verbose: print trades
        return trades
Ejemplo n.º 5
0
    def testPolicy(self, symbol="IBM", \
                   sd=dt.datetime(2009, 1, 1), \
                   ed=dt.datetime(2010, 1, 1), \
                   sv=10000):

        # stock_older_days = 30
        symbols = [symbol]
        prices, sma, p_to_sma = indicators.price_sma(start_date=sd,
                                                     end_date=ed,
                                                     symbols=symbols)
        prices.columns = ['Price']
        sma.columns = ['sma']
        p_to_sma.columns = ['p/sma']

        rsi = indicators.rsi(start_date=sd, end_date=ed, symbols=symbols)
        mfi = indicators.mfi(start_date=sd, end_date=ed, symbols=symbols)
        vix = indicators.vix(start_date=sd, end_date=ed, symbols=symbols)
        rsi.columns = ['RSI']
        mfi.columns = ['MFI']
        vix.columns = ['VIX']

        portfolio = prices.copy()
        portfolio.iloc[:, :] = np.nan

        Xtrain = pd.concat([p_to_sma, rsi, mfi, vix], axis=1)
        Xtrain.fillna(value=0, inplace=True)
        # print '=========Xtrain=======\n', Xtrain

        trading_days = Xtrain.index
        Xtest = Xtrain.values[:, 1:]
        # print '=========Xtest=======\n', Xtest

        y_nparray = self.learner.query(Xtest)
        # print list(self.y_nparray[0])
        # print '=========Y_in=======\n', self.y_nparray
        y_df = pd.DataFrame(data=list(y_nparray[0]),
                            index=trading_days,
                            columns=['y_nparray'])
        # note: use (data=list(self.y_nparray[0]) for bagged
        # print '====y_df====\n', y_df
        # print y_df

        curr_state = 'neutral'
        long_entry = []
        long_exit = []
        short_entry = []
        short_exit = []
        entry_point = 0

        for i in range(len(y_df)):
            if ((int(y_df.iloc[i])) == 1) & (curr_state == 'neutral'):
                # if (int(y_df.iloc[i])) == 1:
                curr_state = 'long'
                portfolio.iloc[i, 0] = 1000
                entry_point = i
                long_entry.append(portfolio.iloc[i:].index[0])

            elif ((int(y_df.iloc[i])) == -1) & (curr_state == 'neutral'):
                # elif (int(y_df.iloc[i])) == -1:
                curr_state = 'short'
                portfolio.iloc[i, 0] = -1000
                entry_point = i
                short_entry.append(portfolio.iloc[i:].index[0])

            # if (i >= entry_point + self.lookback):
            #     curr_state = 'neutral'
            #     entry_point = 0
            #     long_exit.append(portfolio.iloc[i:].index[0])

            if (i >= entry_point + self.lookback) & (curr_state == 'long'):
                portfolio.iloc[i, 0] = 0
                curr_state = 'neutral'
                entry_point = 0
                long_exit.append(portfolio.iloc[i:].index[0])

            elif (i >= entry_point + self.lookback) & (curr_state == 'short'):
                portfolio.iloc[i, 0] = 0
                curr_state = 'neutral'
                entry_point = 0
                short_exit.append(portfolio.iloc[i:].index[0])

        portfolio.fillna(method='ffill', inplace=True)
        portfolio.fillna(0, inplace=True)
        # print '======end portfolio====\n', portfolio
        df_trade = portfolio - portfolio.shift(1)
        df_trade.iloc[0] = portfolio.iloc[0]
        # print '=====df_ttrade=====\n', df_trade
        return df_trade
    def testPolicy(self, symbol="IBM", \
                   sd=dt.datetime(2009, 1, 1), \
                   ed=dt.datetime(2010, 1, 1), \
                   sv=10000):
        '''
        # # here we build a fake set of trades
        # # your code should return the same sort of data
        # dates = pd.date_range(sd, ed)
        # prices_all = ut.get_data([symbol], dates)  # automatically adds SPY
        # prices = prices_all[[symbol, ]]
        # trading_days = prices.index
        #
        # price_sma, rsi, macd_hist = get_indicators(prices)
        #
        # xvalues = pd.concat([price_sma, rsi, macd_hist], ignore_index=True, axis=1)
        # # print '=====xvalues=====\n', xvalues
        # xvalues.fillna(value=0, inplace=True)
        # testX = np.array(xvalues)
        '''

        # stock_older_days = 30
        symbols = [symbol]
        prices, sma, p_to_sma = indicators.price_sma(start_date=sd, end_date=ed, symbols=symbols)
        prices.columns = ['Price']
        sma.columns = ['sma']
        p_to_sma.columns = ['p/sma']

        rsi = indicators.rsi(start_date=sd, end_date=ed, symbols=symbols)
        mfi = indicators.mfi(start_date=sd, end_date=ed, symbols=symbols)
        vix = indicators.vix(start_date=sd, end_date=ed, symbols=symbols)
        rsi.columns = ['RSI']
        mfi.columns = ['MFI']
        vix.columns = ['VIX']

        portfolio = prices.copy()
        portfolio.iloc[:, :] = np.nan

        Xtrain = pd.concat([p_to_sma, rsi, mfi, vix], axis=1)
        Xtrain.fillna(value=0, inplace=True)
        # print '=========Xtrain=======\n', Xtrain

        trading_days = Xtrain.index
        testX = Xtrain.values[:, 1:]
        # print '=========trainX=======\n', testX

        # print '==========textX====\n', testX
        triggers = self.learner.query(testX)
        # print '==========triggers====\n', triggers
        triggers = pd.DataFrame(triggers[0], index=trading_days)
        # use this for bag learner: triggers = pd.DataFrame(triggers[0], index=trading_days)

        status = 'cash'
        trades = prices.copy()
        trades.values[:, :] = 0  # set them all to nothing
        total_triggers = triggers.shape[0]
        trading_days = list(prices.index)
        j = 0

        for i in range(total_triggers):
            # option = triggers.ix[i, symbol][0]
            option = triggers.ix[i, 0]
            gap = trading_days.index(triggers.index[i]) - trading_days.index(triggers.index[j])
            if status == 'cash':
                if option == 1.0:
                    trades.ix[triggers.index[i], :] = 1000
                    status = 'long'
                    j = i
                elif option == -1.0:
                    trades.ix[triggers.index[i], :] = -1000
                    status = 'short'
                    j = i
            elif status == 'long':
                if (option == 0.0) & (gap >= self.N):
                    trades.ix[triggers.index[i], :] = -1000
                    status = 'cash'
                    j = i
                elif (option == -1.0) & (gap >= self.N):
                    trades.ix[triggers.index[i], :] = -2000
                    status = 'short'
                    j = i
            elif status == 'short':
                if (option == 0.0) & (gap >= self.N):
                    trades.ix[triggers.index[i], :] = 1000
                    status = 'cash'
                    j = i
                elif (option == 1.0) & (gap >= self.N):
                    trades.ix[triggers.index[i], :] = 2000
                    status = 'long'
                    j = i

        if self.verbose: print type(trades)  # it better be a DataFrame!
        if self.verbose: print trades
        return trades
Ejemplo n.º 7
0
    def addEvidence(self, symbol = "AAPL", \
        sd=dt.datetime(2008,1,1), \
        ed=dt.datetime(2009,12,31), \
        sv = 100000):

        # need to determine a lookback and pull data for before hand
        self.learner = ql.QLearner(num_actions=3, num_states=3000)

        # example usage of the old backward compatible util function
        syms = [symbol]
        lookback = 14
        indicator_start = sd.date() - dt.timedelta(days=(lookback * 2))
        dates = pd.date_range(indicator_start, ed)
        prices_all = ut.get_data(syms, dates)  # automatically adds SPY
        prices = prices_all[syms]  # only portfolio symbols
        prices_SPY = prices_all['SPY']  # only SPY, for comparison later
        sma, psr = ind.price_sma(prices, lookback)
        _, _, bbp = ind.bollinger_bands(prices, sma, lookback)
        wpr = ind.williams_pr(prices, lookback)
        psr = psr.ix[sd:, :].dropna()
        wpr = wpr.ix[sd:, :].dropna()
        bbp = bbp.ix[sd:, :].dropna()
        prices = prices.ix[sd:, :]
        self.indicators = pd.concat([
            self.discretize_index(wpr, sym=symbol),
            self.discretize_index(bbp, sym=symbol),
            self.discretize_index(psr, sym=symbol)
        ],
                                    axis=1)

        iterations = 5
        convergence_count = 0
        last_return = 0
        daily_returns = (prices.shift(-1) / prices) - 1

        while iterations:
            actions = []
            holdings = [0]
            port_val = [sv]
            state = int(
                str(1) +
                "".join([str(int(i)) for i in self.indicators.iloc[0]]))
            actions.append(self.learner.querysetstate(state))
            #yday_return =
            for day in prices.index:
                # reward based on yesterday's action
                # change in price bewteen first and second day
                if len(holdings) == 1:
                    reward = 0
                elif actions[-1] == 0:
                    if daily_returns.ix[day, 0] > 0 and holdings[-1] > 0:
                        reward = 1000 * daily_returns.ix[day, 0]
                    elif daily_returns.ix[day, 0] > 0 and holdings[-1] < 0:
                        reward = -1000 * daily_returns.ix[day, 0]
                    elif daily_returns.ix[day, 0] < 0 and holdings[-1] < 0:
                        reward = -1000 * daily_returns.ix[day, 0]
                    elif daily_returns.ix[day, 0] < 0 and holdings[-1] > 0:
                        reward = 1000 * daily_returns.ix[day, 0]
                elif actions[-1] == 1:
                    # if we correctly picked a buy
                    reward = 1000 * daily_returns.ix[day, 0]
                elif actions[-1] == 2:
                    reward = -1000 * daily_returns.ix[day, 0]

                #we're calculating the new state for the second day
                hold_ind = 1
                if holdings[-1] != 0:
                    hold_ind = 2
                state = int(
                    str(hold_ind) +
                    "".join([str(int(i)) for i in self.indicators.ix[day, :]]))

                # this will be "yesterday's action" and the price change for second and third day
                actions.append(self.learner.query(state, reward))
                shares, holdings = self.simulate_trade(actions[-1], holdings)

            iterations -= 1
            if self.verbose: print port_val[-1]
    def addEvidence(self, symbol="IBM", \
                    sd=dt.datetime(2008, 1, 1), \
                    ed=dt.datetime(2009, 1, 1), \
                    sv=10000):
        '''Firstly assemble the indicators into the trainning Dataframe (Xtrain and Ytrain), then train the RTLearner'''
        '''calculate indicators'''
        stock_older_days = 45
        symbols = [symbol]
        prices, unused_a, unused_b = indicators.price_sma(
            start_date=(sd - dt.timedelta(days=stock_older_days)),
            end_date=ed,
            symbols=symbols)
        first_trading_day = sd
        while first_trading_day not in prices.index:
            first_trading_day += dt.timedelta(days=1)
        prices = prices / prices.loc[first_trading_day]
        sma = prices.copy().rolling(14).mean()
        p_to_sma = prices / sma
        prices.columns = ['Price']
        sma.columns = ['sma']
        p_to_sma.columns = ['p/sma']

        rsi = indicators.rsi(start_date=(sd -
                                         dt.timedelta(days=stock_older_days)),
                             end_date=ed,
                             symbols=symbols)
        mfi = indicators.mfi(start_date=(sd -
                                         dt.timedelta(days=stock_older_days)),
                             end_date=ed,
                             symbols=symbols)
        vix = indicators.vix(start_date=sd, end_date=ed, symbols=symbols)
        rsi.columns = ['RSI']
        mfi.columns = ['MFI']
        vix.columns = ['VIX']
        '''cut indicators into proper size. i.e. betyween start_date and end_date'''

        prices = prices.loc[first_trading_day:]
        sma = sma.loc[first_trading_day:]
        p_to_sma = p_to_sma.loc[first_trading_day:]
        rsi = rsi.loc[first_trading_day:]
        mfi = mfi.loc[first_trading_day:]
        vix = vix.loc[first_trading_day:]
        '''assemble Xtrain'''

        Xtrain = pd.concat([p_to_sma, rsi, mfi, vix], axis=1)
        # Xtrain.fillna(value=0, inplace=True)
        # print '=========Xtrain=======\n'
        # print Xtrain
        Xtrain = Xtrain.values[:, 1:]
        # print '=========trainX=======\n'
        # print trainX
        '''assemble Ytrain'''

        Ytrain = (prices.shift(-self.lookback) /
                  prices) - 1  # Ytrain is 14 day return
        # print '=========Ytrain=======\n', Ytrain

        Ytrain[Ytrain > 0] = prices.shift(-self.lookback) / (
            prices * (1.0 + 2 * self.impact)) - 1.0
        Ytrain[Ytrain < 0] = prices.shift(-self.lookback) / (
            prices * (1.0 - 2 * self.impact)) - 1.0
        Ytrain = Ytrain.values
        # Ytrain.nan_to_num(0, copy=True)shift
        # print '=========Ytrain=======\n', Ytrain

        YBUY = 0.08
        YSELL = -0.08
        for i in range(len(Ytrain)):
            if Ytrain[i] > YBUY:
                Ytrain[i] = 1
            elif Ytrain[i] < YSELL:
                Ytrain[i] = -1
            else:
                Ytrain[i] = 0
        # print '=========Ytrain=======\n', Ytrain
        # print 'self.learner_1=======\n', self.learner_1
        '''use Xtain and Ytrain to train the random table'''
        self.learner.addEvidence(Xtrain, Ytrain)
        self.Y_in = self.learner.query(Xtrain)
    def testPolicy(self, symbol="IBM", \
                   sd=dt.datetime(2009, 1, 1), \
                   ed=dt.datetime(2010, 1, 1), \
                   sv=10000):
        '''Firstly assemble the indicators into the testing Dataframe (Xtest), then query the RTLearner for Ytrain'''
        '''calculate indicators'''
        stock_older_days = 45
        symbols = [symbol]
        prices, unused_a, unused_b = indicators.price_sma(
            start_date=(sd - dt.timedelta(days=stock_older_days)),
            end_date=ed,
            symbols=symbols)
        first_trading_day = sd
        while first_trading_day not in prices.index:
            first_trading_day += dt.timedelta(days=1)
        prices = prices / prices.loc[first_trading_day]
        sma = prices.copy().rolling(14).mean()
        p_to_sma = prices / sma
        prices.columns = ['Price']
        sma.columns = ['sma']
        p_to_sma.columns = ['p/sma']

        rsi = indicators.rsi(start_date=(sd -
                                         dt.timedelta(days=stock_older_days)),
                             end_date=ed,
                             symbols=symbols)
        mfi = indicators.mfi(start_date=(sd -
                                         dt.timedelta(days=stock_older_days)),
                             end_date=ed,
                             symbols=symbols)
        vix = indicators.vix(start_date=sd, end_date=ed, symbols=symbols)
        rsi.columns = ['RSI']
        mfi.columns = ['MFI']
        vix.columns = ['VIX']
        '''cut indicators into proper size. i.e. betyween start_date and end_date'''

        prices = prices.loc[first_trading_day:]
        sma = sma.loc[first_trading_day:]
        p_to_sma = p_to_sma.loc[first_trading_day:]
        rsi = rsi.loc[first_trading_day:]
        mfi = mfi.loc[first_trading_day:]
        vix = vix.loc[first_trading_day:]
        '''' make empty portfolio for future use'''

        portfolio = prices.copy()
        portfolio.iloc[:, :] = np.nan
        '''assemble Xtest'''
        Xtest = pd.concat([p_to_sma, rsi, mfi, vix],
                          axis=1,
                          join_axes=[vix.index])
        # Xtrain.fillna(value=0, inplace=True)
        # print '=========Xtrain=======\n', Xtrain
        date_index = Xtest.index
        Xtest = Xtest.values[:, 1:]
        # print '=========Xtest=======\n', Xtest
        '''query for Ytest, then assemble it back to a dataframe for the market simulator'''

        Ytest = self.learner.query(Xtest)
        # print list(self.y_nparray[0])
        # print '=========Y_in=======\n', self.y_nparray
        y_df = pd.DataFrame(data=list(Ytest[0]),
                            index=date_index,
                            columns=['Ytest'])
        # note: use (data=list(self.y_nparray[0]) for bagged
        # print '====y_df====\n', y_df
        # print y_df
        '''simulating market, enter a position, then exit the position until lookback days passed '''
        curr_state = 'neutral'
        long_entry = []
        long_exit = []
        short_entry = []
        short_exit = []
        entry_point = 0

        for i in range(len(y_df)):
            if ((int(y_df.iloc[i])) == 1) & (curr_state == 'neutral'):
                # if (int(y_df.iloc[i])) == 1:
                curr_state = 'long'
                portfolio.iloc[i, 0] = 1000
                entry_point = i
                long_entry.append(portfolio.iloc[i:].index[0])

            elif ((int(y_df.iloc[i])) == -1) & (curr_state == 'neutral'):
                # elif (int(y_df.iloc[i])) == -1:
                curr_state = 'short'
                portfolio.iloc[i, 0] = -1000
                entry_point = i
                short_entry.append(portfolio.iloc[i:].index[0])

            if (i >= entry_point + self.lookback) & (curr_state == 'long'):
                portfolio.iloc[i, 0] = 0
                curr_state = 'neutral'
                entry_point = 0
                long_exit.append(portfolio.iloc[i:].index[0])

            elif (i >= entry_point + self.lookback) & (curr_state == 'short'):
                portfolio.iloc[i, 0] = 0
                curr_state = 'neutral'
                entry_point = 0
                short_exit.append(portfolio.iloc[i:].index[0])
        '''good old market simulator, generating the df_trade'''

        portfolio.fillna(method='ffill', inplace=True)
        portfolio.fillna(0, inplace=True)
        # print '======end portfolio====\n', portfolio
        df_trade = portfolio - portfolio.shift(1)
        df_trade.iloc[0] = portfolio.iloc[0]
        # print '=====df_ttrade=====\n', type(df_trade)
        return df_trade