Ejemplo n.º 1
0
                for y in range(precip_dataset.variables[y_dim_name].size):
                    
                    logger.info('Processing x/y {}/{}'.format(x, y))
                    
                    # slice out the period of record for the x/y point
                    precip_data = precip_dataset.variables[precip_var_name][:, x, y]
                    temp_data = temp_dataset.variables[temp_var_name][:, x, y]
                                           
                    # only process non-empty grid cells, i.e. the data array contains at least some non-NaN values
                    if (isinstance(precip_data, np.ma.MaskedArray)) and precip_data.mask.all():
                        
                            continue
                    
                    else:  # we have some valid values to work with
                        
                        # perform the SPEI computation (fit to the Pearson distribution) and assign the values into the dataset
                        output_dataset.variables[variable_name][:, x, y] = indices.spei_pearson(precip_data,
                                                                                                temp_data,
                                                                                                month_scale, 
                                                                                                precip_dataset.variables[y_dim_name][y],
                                                                                                valid_min, 
                                                                                                valid_max,
                                                                                                data_start_date.year,
                                                                                                data_end_date.year,
                                                                                                calibration_start_year, 
                                                                                                calibration_end_year)
            
    except Exception, e:
        logger.error('Failed to complete', exc_info=True)
        raise
Ejemplo n.º 2
0
def compute_worker(args):
         
    # extract the arguments
    lat_index = args[0]
    
    # turn the shared array into a numpy array
    data = np.ctypeslib.as_array(shared_array)
    data = data.reshape(data_shape)
                 
    # data now expected to be in shape: (indicators, distributions, month_scales, times, lats)
    #
    # with indicator (spi: 0,  spei: 1)
    #      distribution (gamma: 0,  pearson: 1)
    #      month_scales (0, month_scales)
    #
    # with data[0, 0, 0] indicating the longitude slice with shape: (times, lats) with values for precipitation 
    # with data[1, 0, 0] indicating the longitude slice with shape: (times, lats) with values for temperature 
    
    # only process non-empty grid cells, i.e. data array contains at least some non-NaN values
    if (isinstance(data[0, 0, 0, :, lat_index], np.ma.MaskedArray) and data[0, 0, 0, :, lat_index].mask.all()) \
        or np.isnan(data[0, 0, 0, :, lat_index]).all() or (data[0, 0, 0, :, lat_index] <= 0).all():
              
        pass         
                   
    else:  # we have some valid values to work with
              
        logger.info('Processing latitude: {}'.format(lat_index))
              
        for month_index, month_scale in enumerate(month_scales):
            
            # only process month scales after 0 since month_scale = 0 is reserved for the input data 
            if month_index > 0:
                
                # loop over all specified indicators
                for indicator in indicators:

                    # loop over all specified distributions
                    for distribution in distributions:
                        
                        if indicator == 'spi':
                            
                            if distribution == 'gamma':
                                    # perform a fitting to gamma     
                                    data[0, 0, month_index, :, lat_index] = indices.spi_gamma(data[0, 0, 0, :, lat_index],
                                                                                              month_scale, 
                                                                                              valid_min, 
                                                                                              valid_max)
                            elif distribution == 'pearson':
                                    # perform a fitting to Pearson type III     
                                    data[0, 1, month_index, :, lat_index] = indices.spi_pearson(data[0, 0, 0, :, lat_index], 
                                                                                                month_scale, 
                                                                                                valid_min, 
                                                                                                valid_max, 
                                                                                                data_start_year, 
                                                                                                data_end_year, 
                                                                                                calibration_start_year, 
                                                                                                calibration_end_year)
    
                        elif indicator == 'spei':
                            
                            if distribution == 'gamma':
                                    # perform a fitting to gamma     
                                    data[1, 0, month_index, :, lat_index] = indices.spei_gamma(data[0, 0, 0, :, lat_index],
                                                                                               data[0, 0, 1, :, lat_index],
                                                                                               data_start_year,
                                                                                               lats_array[lat_index],
                                                                                               month_scale, 
                                                                                               valid_min, 
                                                                                               valid_max)
                            elif distribution == 'pearson':
                                    # perform a fitting to Pearson type III     
                                    data[1, 1, month_index, :, lat_index] = indices.spei_pearson(data[0, 0, 0, :, lat_index],
                                                                                                 data[0, 0, 1, :, lat_index],
                                                                                                 month_scale, 
                                                                                                 lats_array[lat_index],
                                                                                                 valid_min, 
                                                                                                 valid_max,
                                                                                                 data_start_year,
                                                                                                 data_end_year,
                                                                                                 calibration_start_year, 
                                                                                                 calibration_end_year)
                                    
                            else:
                                raise ValueError('Invalid distribution specified: {}'.format(distribution))
                        else:
                            raise ValueError('Invalid indicator specified: {}'.format(indicator))
                    precip_data = precip_dataset.variables[precip_var_name][:, x, y]
                    temp_data = temp_dataset.variables[temp_var_name][:, x, y]
               
                    # only process non-empty grid cells, i.e. the data array contains at least some non-NaN values
                    if (isinstance(precip_data, np.ma.MaskedArray)) and precip_data.mask.all():
                        
                            continue
                    
                    else:  # we have some valid values to work with
                        
                        latitude = precip_dataset.variables[y_dim_name][y]
                        
                        for month_scale_index, month_scale_var_name in enumerate(sorted(datasets.keys())):

                            # perform the SPI computation (fit to the pearson distribution) and assign the values into the dataset
                            datasets[month_scale_var_name].variables[month_scale_var_name][:, x, y] = \
                                indices.spei_pearson(precip_data,
                                                     temp_data,
                                                     month_scales[month_scale_index], 
                                                     latitude,
                                                     valid_min, 
                                                     valid_max,
                                                     data_start_date.year,
                                                     data_end_date.year,
                                                     calibration_start_year, 
                                                     calibration_end_year)
                                
    except Exception, e:
        logger.error('Failed to complete', exc_info=True)
        raise
Ejemplo n.º 4
0
                                        
                 # only process non-empty grid cells, i.e. the data array contains at least some non-NaN values
                 if (isinstance(precip_data, np.ma.MaskedArray)) and precip_data.mask.all():
                     
                         continue
                 
                 else:  # we have some valid values to work with
                     
                     latitude = precip_dataset.variables[y_dim_name][y]
                     
                     # perform the SPEI computation (fit to the Pearson distribution) and assign the values into the dataset
                     spei_pearson_dataset.variables[variable_name_spei_pearson][:, x, y] = indices.spei_pearson(precip_data,
                                                                                                                temp_data,
                                                                                                                month_scale, 
                                                                                                                latitude,
                                                                                                                valid_min, 
                                                                                                                valid_max,
                                                                                                                data_start_date.year,
                                                                                                                data_end_date.year,
                                                                                                                calibration_start_year, 
                                                                                                                calibration_end_year)
 
                     # perform the SPEI computation (fit to the Gamma distribution) and assign the values into the dataset
                     spei_gamma_dataset.variables[variable_name_spei_gamma][:, x, y] = indices.spei_gamma(precip_data,
                                                                                                          temp_data,
                                                                                                          data_start_date.year,
                                                                                                          latitude,
                                                                                                          month_scale, 
                                                                                                          valid_min, 
                                                                                                          valid_max)
                     
                     # perform the SPI computation (fit to the Pearson distribution) and assign the values into the dataset