Ejemplo n.º 1
0
def test_df_to_matrix():
    lr = LogisticRegression()
    source_list = ['reach', 'sparser', 'signor']
    cw = CountsScorer(lr, source_list)
    x_arr = cw.df_to_matrix(test_df)
    assert isinstance(x_arr, np.ndarray), 'x_arr should be a numpy array'
    assert x_arr.shape == (len(test_df), len(source_list)), \
            'stmt matrix dimensions should match test stmts'
    assert x_arr.shape == (len(test_df), len(source_list))
    # Try again with statement type
    cw = CountsScorer(lr, source_list, use_stmt_type=True)
    num_types = len(cw.stmt_type_map)
    x_arr = cw.df_to_matrix(test_df)
    assert x_arr.shape == (len(test_df), len(source_list) + num_types), \
        'matrix should have a col for sources and other cols for every ' \
        'statement type.'
Ejemplo n.º 2
0
def test_check_df_cols_noerr():
    """Test dataframe should not raise ValueError."""
    lr = LogisticRegression()
    source_list = ['reach', 'sparser', 'signor']
    cw = CountsScorer(lr, source_list)
    cw.df_to_matrix(test_df)
Ejemplo n.º 3
0
def test_check_df_cols_err():
    """Drop a required column and make sure we get a ValueError."""
    lr = LogisticRegression()
    source_list = ['reach', 'sparser', 'signor']
    cw = CountsScorer(lr, source_list)
    cw.df_to_matrix(test_df.drop('stmt_type', axis=1))