Ejemplo n.º 1
0
def test_complex_agent_refinement():
    ras = Agent('RAS')
    raf1 = Agent('RAF',
                 mods=[ModCondition('ubiquitination', None, None, True)])
    raf2 = Agent('RAF',
                 mods=[ModCondition('ubiquitination', None, None, False)])
    st1 = Complex([ras, raf1])
    st2 = Complex([ras, raf2])
    pa = Preassembler(hierarchies, stmts=[st1, st2])
    pa.combine_related()
    assert len(pa.unique_stmts) == 2
    assert len(pa.related_stmts) == 2
Ejemplo n.º 2
0
def test_dynamic_property_to_english():
    agent = Agent('EGFR', mods=[ModCondition('phosphorylation')],
                  db_refs={'HGNC': '3236'})
    query = DynamicProperty(agent, 'always_value', 'low', 'qualitative')
    assert query.to_english() == 'Phosphorylated EGFR is always low.'
    query.pattern_type = 'eventual_value'
    assert query.to_english() == 'Phosphorylated EGFR is eventually low.'
Ejemplo n.º 3
0
def test_duplicates_sorting():
    mc = ModCondition('phosphorylation')
    map2k1_1 = Agent('MAP2K1', mods=[mc])
    mc1 = ModCondition('phosphorylation', 'serine', '218')
    mc2 = ModCondition('phosphorylation', 'serine', '222')
    mc3 = ModCondition('phosphorylation', 'serine', '298')
    map2k1_2 = Agent('MAP2K1', mods=[mc1, mc2, mc3])
    mapk3 = Agent('MAPK3')
    #ras = Agent('MAPK3', db_refs = {'FA': '03663'})
    #nras = Agent('NRAS', db_refs = {'FA': '03663'})
    st1 = Phosphorylation(map2k1_1, mapk3, position='218')
    st2 = Phosphorylation(map2k1_2, mapk3)
    st3 = Phosphorylation(map2k1_1, mapk3, position='218')
    stmts = [st1, st2, st3]
    pa = Preassembler(hierarchies, stmts=stmts)
    pa.combine_duplicates()
    assert len(pa.unique_stmts) == 2
Ejemplo n.º 4
0
def test_stringify_dynamic_property():
    agent = Agent('EGFR', mods=[ModCondition('phosphorylation')],
                  db_refs={'HGNC': '3236'})
    query = DynamicProperty(agent, 'always_value', 'low', 'qualitative')
    query_str = str(query)
    assert query_str == ("DynamicPropertyQuery(entity=EGFR(mods: "
                         "(phosphorylation)), pattern=always_value, "
                         "molecular quantity=('qualitative', 'low'))")
Ejemplo n.º 5
0
def test_find_contradicts():
    st1 = Inhibition(Agent('a'), Agent('b'))
    st2 = Activation(Agent('a'), Agent('b'))
    st3 = IncreaseAmount(Agent('a'), Agent('b'))
    st4 = DecreaseAmount(Agent('a'), Agent('b'))
    st5 = ActiveForm(
        Agent('a', mods=[ModCondition('phosphorylation', None, None, True)]),
        'kinase', True)
    st6 = ActiveForm(
        Agent('a', mods=[ModCondition('phosphorylation', None, None, True)]),
        'kinase', False)
    pa = Preassembler(hierarchies, [st1, st2, st3, st4, st5, st6])
    contradicts = pa.find_contradicts()
    assert len(contradicts) == 3
    for s1, s2 in contradicts:
        assert {s1.uuid,
                s2.uuid} in ({st1.uuid,
                              st2.uuid}, {st3.uuid,
                                          st4.uuid}, {st5.uuid, st6.uuid})
Ejemplo n.º 6
0
def test_complex_refinement_order():
    st1 = Complex([Agent('MED23'), Agent('ELK1')])
    st2 = Complex([
        Agent('ELK1', mods=[ModCondition('phosphorylation')]),
        Agent('MED23')
    ])
    pa = Preassembler(hierarchies, stmts=[st1, st2])
    pa.combine_duplicates()
    pa.combine_related()
    assert len(pa.related_stmts) == 1
Ejemplo n.º 7
0
def test_intervention_query_to_english():
    condition = Agent('EGF', db_refs={'HGNC': '3229'})
    target = Agent('ERK', db_refs={'FPLX': 'ERK'})
    phos = Agent('ERK', db_refs={'FPLX': 'ERK'},
                 mods=[ModCondition('phosphorylation')])
    query = SimpleInterventionProperty(condition, target, 'up')
    assert query.to_english() == 'EGF increases ERK.'
    query = SimpleInterventionProperty(condition, target, 'down')
    assert query.to_english() == 'EGF decreases ERK.'
    query = SimpleInterventionProperty(condition, phos, 'up')
    assert query.to_english() == 'EGF increases phosphorylated ERK.'
Ejemplo n.º 8
0
def test_cljson():
    ag = Agent('BRAF',
               mods=[ModCondition('phosphorylation', 'T', '396', False)],
               db_refs={
                   'TEXT': 'Braf',
                   'HGNC': '123'
               })
    cj = Bioagent.make_cljson(ag)
    ag2 = Bioagent.get_agent(cj)
    assert ag2.db_refs['TYPE'] == 'ONT::GENE-PROTEIN'
    ag2.db_refs.pop('TYPE')
    assert ag.equals(ag2), (ag, ag2)
Ejemplo n.º 9
0
def test_dynamic_property_to_json():
    agent = Agent('EGFR', mods=[ModCondition('phosphorylation')],
                  db_refs={'HGNC': '3236'})
    query = DynamicProperty(agent, 'always_value', 'low', 'qualitative')
    json = query.to_json()
    assert json.get('type') == 'dynamic_property'
    entity = json.get('entity')
    assert entity.get('name') == 'EGFR'
    assert entity.get('db_refs') == {"HGNC": "3236"}
    assert json.get('pattern_type') == 'always_value'
    quantity = json.get('quantity')
    assert quantity.get('type') == 'qualitative'
    assert quantity.get('value') == 'low'
Ejemplo n.º 10
0
def get_phospho_antibody_map(fname=antibody_map_file):
    # First gather the annotations for the phosphosites
    df = pandas.read_csv(fname, index_col=None, sep=',', encoding='utf8')
    antibody_map = {}

    for _, row in df.iterrows():
        ps = row['phosphosite']
        sub_upid = row['SUB_ID']
        if not pandas.isnull(sub_upid):
            if sub_upid.find('-') != -1:
                sub_upid = sub_upid.split('-')[0]
            sub_hgnc_symbol = uniprot_client.get_gene_name(sub_upid)
            sub_hgnc = hgnc_client.get_hgnc_id(sub_hgnc_symbol)
        else:
            sub_hgnc_symbol = row['SUB_GENE']
            sub_hgnc_id = hgnc_client.get_hgnc_id(sub_hgnc_symbol)
            sub_upid = hgnc_client.get_uniprot_id(sub_hgnc_id)
            if sub_upid is None:
                continue
        sub = Agent(sub_hgnc_symbol,
                    db_refs={
                        'UP': sub_upid,
                        'HGNC': sub_hgnc
                    })
        residue = row['Actual_site'][0]
        if len(row['Actual_site']) > 1:
            position = row['Actual_site'][1:]
        else:
            position = None
        mc = ModCondition('phosphorylation', residue, position)
        sub.mods = [mc]
        if ps in antibody_map:
            found = False
            for p in antibody_map[ps]:
                if p.name == sub.name and p.mods[0].residue == residue and \
                    p.mods[0].position == position:
                    found = True
                    break
            if not found:
                antibody_map[ps].append(sub)
        else:
            antibody_map[ps] = [sub]
    return antibody_map
Ejemplo n.º 11
0
def test_bound_condition_deep_refinement():
    """A statement with more specific bound context should be supported by a
    less specific statement."""
    src = Agent('SRC', db_refs={'HGNC': '11283'})
    gtp1 = Agent('GTP', db_refs={'CHEBI': '15996'})
    gtp2 = Agent('GTP',
                 mods=[ModCondition('phosphorylation')],
                 db_refs={'CHEBI': '15996'})
    nrasgtp1 = Agent('NRAS',
                     db_refs={'HGNC': '7989'},
                     bound_conditions=[BoundCondition(gtp1, True)])
    nrasgtp2 = Agent('NRAS',
                     db_refs={'HGNC': '7989'},
                     bound_conditions=[BoundCondition(gtp2, True)])
    st1 = Phosphorylation(src, nrasgtp1, 'tyrosine', '32')
    st2 = Phosphorylation(src, nrasgtp2, 'tyrosine', '32')
    # The top-level list should contain only one statement, the more specific
    # modification, supported by the less-specific modification.
    pa = Preassembler(hierarchies, stmts=[st1, st2])
    stmts = pa.combine_related()
    assert len(stmts) == 1
    assert stmts[0].equals(st2)
    assert len(stmts[0].supported_by) == 1
    assert stmts[0].supported_by[0].equals(st1)
Ejemplo n.º 12
0
def read_phosphosite(fname):
    df = pandas.read_csv(fname, index_col=None)
    statements = []
    antibody_map = {}
    for _, row in df.iterrows():
        sub_upid = row['SUB_ID']
        if not pandas.isnull(sub_upid):
            sub_hgnc_symbol = uniprot_client.get_gene_name(sub_upid)
            sub_hgnc = hgnc_client.get_hgnc_id(sub_hgnc_symbol)
        else:
            sub_hgnc_symbol = row['SUB_GENE']
            sub_hgnc_id = hgnc_client.get_hgnc_id(sub_hgnc_symbol)
            sub_upid = hgnc_client.get_uniprot_id(sub_hgnc_id)
        sub = Agent(sub_hgnc_symbol,
                    db_refs={
                        'UP': sub_upid,
                        'HGNC': sub_hgnc
                    })
        residue = row['Actual_site'][0]
        if len(row['Actual_site']) > 1:
            position = row['Actual_site'][1:]
        else:
            position = None

        sub_readout = deepcopy(sub)
        mc = ModCondition('phosphorylation', residue, position)
        sub_readout.mods = [mc]
        ps = row['phosphosite']
        if ps in antibody_map:
            found = False
            for p in antibody_map[ps]:
                if p.name == sub.name and p.mods[0].residue == residue and \
                    p.mods[0].position == position:
                    found = True
                    break
            if not found:
                antibody_map[ps].append(sub_readout)
        else:
            antibody_map[ps] = [sub_readout]

        kin_upid = row['KIN_ID']
        if not pandas.isnull(kin_upid):
            if not uniprot_client.is_human(kin_upid):
                print('%s non human' % kin_upid)
                continue
            kin_hgnc_symbol = uniprot_client.get_gene_name(kin_upid)
            kin_hgnc = hgnc_client.get_hgnc_id(kin_hgnc_symbol)
        else:
            kin_hgnc_symbol = row['KINASE_GENE_SYMBOL']
            kin_hgnc_id = hgnc_client.get_hgnc_id(kin_hgnc_symbol)
            kin_upid = hgnc_client.get_uniprot_id(kin_hgnc_id)
        kin = Agent(kin_hgnc_symbol,
                    db_refs={
                        'UP': kin_upid,
                        'HGNC': kin_hgnc
                    })

        ev = Evidence(source_api='phosphosite')
        st = Phosphorylation(kin, sub, residue, position, evidence=[ev])
        statements.append(st)
    return statements, antibody_map
Ejemplo n.º 13
0
def test_missing_monomer_site():
    stmts = [Activation(Agent('BRAF'), Agent('KRAS'))]
    model = tra_module.assemble_model(stmts)
    mc = ModCondition('phosphorylation', None, None, True)
    agent = Agent('KRAS', mods=[mc])
    tra.get_create_observable(model, agent)
Ejemplo n.º 14
0
def pysb_to_gromet(pysb_model, model_name, statements=None, fname=None):
    """Convert PySB model to GroMEt object and save it to a JSON file.

    Parameters
    ----------
    pysb_model : pysb.Model
        PySB model object.
    model_name : str
        A name of EMMAA model.
    statements : Optional[list[indra.statements.Statement]]
        A list of INDRA Statements a PySB model was assembled from. If
        provided the statement hashes will be propagated into GroMEt metadata.
    fname : Optional[str]
        If given, the GroMEt will be dumped into JSON file.

    Returns
    -------
    g : automates.script.gromet.gromet.Gromet
        A GroMEt object built from PySB model.
    """
    from gromet import Gromet, gromet_to_json, \
        Junction, Wire, UidJunction, UidType, UidWire, Relation, \
        UidBox, UidGromet, Literal, Val
    from gromet_metadata import IndraAgent, IndraAgentReferenceSet, \
        ReactionReference, UidMetadatum, MetadatumMethod, Provenance, \
        get_current_datetime, ModelInterface
    from pysb import Parameter, WILD
    from pysb.bng import generate_equations

    logger.info('Generating equations ...')
    generate_equations(pysb_model)

    logger.info('Creating GroMEt')
    junctions = []
    wires = []
    # Get all species values
    species_values = {}
    for initial in pysb_model.initials:
        ix = pysb_model.get_species_index(initial.pattern)
        if initial.value:
            species_values[ix] = Literal(uid=None,
                                         type=UidType("Integer"),
                                         value=Val(initial.value.value),
                                         name=None,
                                         metadata=None)

    # Get groundings for monomers
    groundings_by_monomer = {}
    # Build up db_refs for each monomer object
    for ann in pysb_model.annotations:
        if ann.predicate == 'is':
            m = ann.subject
            db_name, db_id = parse_identifiers_url(ann.object)
            if m in groundings_by_monomer:
                groundings_by_monomer[m][db_name] = db_id
            else:
                groundings_by_monomer[m] = {db_name: db_id}
    # Store species names to refer later
    species_nodes = [str(sp) for sp in pysb_model.species]
    # Add all species junctions
    for ix, sp in enumerate(pysb_model.species):
        # Map to a list of agents
        agents = []
        for mp in sp.monomer_patterns:
            mods = []
            if hasattr(mp.monomer, 'site_annotations'):
                for site, state in mp.site_conditions.items():
                    if isinstance(state, tuple) and state[1] == WILD:
                        state = state[0]
                    mod, mod_type, res, pos = None, None, None, None
                    for ann in mp.monomer.site_annotations:
                        if ann.subject == (site, state):
                            mod_type = ann.object
                        elif ann.subject == site and \
                                ann.predicate == 'is_residue':
                            res = ann.object
                        if ann.subject == site and \
                                ann.predicate == 'is_position':
                            pos = ann.object
                        if mod_type:
                            not_mod, mod = states[mod_type]
                            if state == mod:
                                is_mod = True
                            elif state == not_mod:
                                is_mod = False
                            else:
                                logger.warning('Unknown state %s for %s, '
                                               'setting as not modified' %
                                               (state, mod_type))
                                is_mod = False
                            mod = ModCondition(mod_type, res, pos, is_mod)
                    if mod:
                        mods.append(mod)
            if not mods:
                mods = None
            ag = Agent(mp.monomer.name,
                       mods=mods,
                       db_refs=groundings_by_monomer.get(mp.monomer))
            agents.append(ag)
        agent_metadata = IndraAgentReferenceSet(
            uid=UidMetadatum(f'{species_nodes[ix]}_metadata'),
            provenance=Provenance(method=MetadatumMethod('from_emmaa_model'),
                                  timestamp=get_current_datetime()),
            indra_agent_references=[IndraAgent(ag.to_json()) for ag in agents])
        junctions.append(
            Junction(uid=UidJunction(f'J:{species_nodes[ix]}'),
                     type=UidType('State'),
                     name=species_nodes[ix],
                     value=species_values.get(ix),
                     value_type=UidType('Integer'),
                     metadata=[agent_metadata]))
    # Add wires for each reaction
    rate_counts = defaultdict(int)
    for rxn in pysb_model.reactions:
        rate_params = [
            rate_term for rate_term in rxn['rate'].args
            if isinstance(rate_term, Parameter)
        ]
        assert len(rate_params) == 1
        rate = rate_params[0].name
        rate_counts[rate] += 1
        rate_node = f'{rate}:{rate_counts[rate]}'
        # Get metadata for rate node
        assert len(rxn['rule']) == 1
        assert len(rxn['reverse']) == 1
        rule = rxn['rule'][0]
        reverse = rxn['reverse'][0]
        if statements:
            stmt = stmt_from_rule(rule, pysb_model, statements)
        # Add rate junction for a reaction (uid and name are the same for now)
        reaction_metadata = ReactionReference(
            uid=UidMetadatum(f'{rate_node}_metadata'),
            provenance=Provenance(method=MetadatumMethod('from_emmaa_model'),
                                  timestamp=get_current_datetime()),
            indra_stmt_hash=stmt.get_hash(),
            reaction_rule=rule,
            is_reverse=reverse)
        wire_count = defaultdict(int)
        junctions.append(
            Junction(uid=UidJunction(f'J:{rate_node}'),
                     type=UidType('Rate'),
                     name=rate,
                     value=Literal(uid=None,
                                   type=UidType("Float"),
                                   value=Val(rate_params[0].value),
                                   name=None,
                                   metadata=None),
                     value_type=UidType('Float'),
                     metadata=[reaction_metadata]))
        # Add wires from reactant to rate
        for reactant_ix in rxn['reactants']:
            reactant = species_nodes[reactant_ix]
            wire = f'{reactant}_{rate_node}'
            wire_count[wire] += 1
            wires.append(
                Wire(uid=UidWire(f'W:{wire}:w{wire_count[wire]}'),
                     type=None,
                     value_type=None,
                     name=None,
                     value=None,
                     metadata=None,
                     src=UidJunction(f'J:{reactant}'),
                     tgt=UidJunction(f'J:{rate_node}')))
        # Add wires from rate to product
        for prod_ix in rxn['products']:
            prod = species_nodes[prod_ix]
            wire = f'{rate_node}_{prod}'
            wire_count[wire] += 1
            wires.append(
                Wire(uid=UidWire(f'W:{wire}:w{wire_count[wire]}'),
                     type=None,
                     value_type=None,
                     name=None,
                     value=None,
                     metadata=None,
                     src=UidJunction(f'J:{rate_node}'),
                     tgt=UidJunction(f'J:{prod}')))
    # Create relation
    pnc = Relation(
        uid=UidBox(model_name),
        type=UidType("PetriNetClassic"),
        name=model_name,
        ports=None,
        # contents
        junctions=[j.uid for j in junctions],
        wires=[w.uid for w in wires],
        boxes=None,
        metadata=None)
    boxes = [pnc]

    # Create model interface metadata
    model_interface = \
        ModelInterface(
            uid=UidMetadatum(f'{model_name}_model_interface'),
            provenance=Provenance(method=MetadatumMethod('from_emmaa_model'),
                                  timestamp=get_current_datetime()),
            variables=[j.uid for j in junctions],
            parameters=[j.uid for j in junctions if j.type == 'Rate'],
            initial_conditions=[j.uid for j in junctions if j.type == 'State'])
    # Create Gromet object
    g = Gromet(uid=UidGromet(f'{model_name}_pnc'),
               name=model_name,
               type=UidType("PetriNetClassic"),
               root=pnc.uid,
               types=None,
               literals=None,
               junctions=junctions,
               ports=None,
               wires=wires,
               boxes=boxes,
               variables=None,
               metadata=[model_interface])
    logger.info('Created GroMEt')
    # Optionally save Gromet to JSON file
    if fname:
        gromet_to_json(g, fname)
    return g