Ejemplo n.º 1
0
def gini_accum(data, index):

    #~ data = raw_data.set_index([raw_data['timestamp'].dt.to_period('M'), raw_data.index])
    monthly_data = data.groupby(pd.Grouper(key='timestamp', freq='MS'))
    if index is not None:
        gini_accum_df = pd.Series(index=index)
    else:
        gini_accum_df = pd.Series(index=monthly_data.size().index)
    indices = gini_accum_df.index
    i = 0
    accum_data = pd.DataFrame()
    for name, group in monthly_data:
        # Accumulate data so far
        accum_data = accum_data.append(group)

        # Get contributions per contributor, sort them
        #   and make it a list to call to gini_coeff()
        values = contributions_per_author(accum_data) \
                .tolist()

        n_users = len(values)

        if (n_users) < MINIMAL_USERS_GINI:
            gini_accum_df[indices[i]] = np.NaN
        else:
            gini_accum_df[indices[i]] = ineq.gini_corrected(values, n_users)
        i = i + 1

    return gini_accum_df
Ejemplo n.º 2
0
    def calculate_gini_user_talk_edits(self):
        if 'user_talks' in self.graph.vs.attributes() and 'gini_user_talks'\
            not in self.graph.attributes():

            gini = ineq.gini_corrected(self.graph.vs['user_talks'])
            if gini is not np.nan:
                self.graph['gini_user_talks'] = f"{gini:.2f}"
        else:
            self.graph['gini_user_talks'] = 'nan'
Ejemplo n.º 3
0
    def calculate_gini_closeness(self):
        if 'closeness' in self.graph.vs.attributes() and 'gini_closeness'\
            not in self.graph.attributes():

            gini = ineq.gini_corrected(self.graph.vs['closeness'])
            if gini is not np.nan:
                self.graph['gini_closeness'] = f"{gini:.2f}"
        else:
            self.graph['gini_closeness'] = 'nan'
Ejemplo n.º 4
0
    def calculate_gini_betweenness(self):
        if 'betweenness' in self.graph.vs.attributes() and 'gini_betweenness'\
            not in self.graph.attributes():
            gini = ineq.gini_corrected(self.graph.vs['betweenness'])
            value = 'nan'
            if gini is not np.nan:
                value = f"{gini:.2f}"

            self.graph['gini_betweenness'] = value
Ejemplo n.º 5
0
    def calculate_gini_degree(self):
        if self.graph.is_directed() and 'gini_indegree' not in\
            self.graph.attributes():

            gini = ineq.gini_corrected(self.graph.vs['indegree'])
            value = 'nan'
            if gini is not np.nan:
                value = value = f"{gini:.2f}"
            self.graph['gini_indegree'] = value
            gini = ineq.gini_corrected(self.graph.vs['outdegree'])
            value = 'nan'
            if gini is not np.nan:
                value = value = f"{gini:.2f}"
            self.graph['gini_outdegree'] = value

        elif 'gini_degree' not in self.graph.attributes():
            gini = ineq.gini_corrected(self.graph.vs['degree'])
            value = 'nan'
            if gini is not np.nan:
                value = value = f"{gini:.2f}"
            self.graph['gini_degree'] = value