Ejemplo n.º 1
0
    def test_construct_policies_singlefactor(self):
        """
        Test policy constructor function for single factor control states
        """

        n_states = [3]
        n_control = [3]
        control_fac_idx = [0]

        # one step policies
        policy_len = 1

        policies = core.construct_policies(n_states, n_control, policy_len,
                                           control_fac_idx)
        self.assertEqual(len(policies), n_control[0])
        for policy in policies:
            self.assertEqual(policy.shape[0], policy_len)

        # multistep step policies
        policy_len = 3

        policies = core.construct_policies(n_states, n_control, policy_len,
                                           control_fac_idx)
        for policy in policies:
            self.assertEqual(policy.shape[0], policy_len)

        # now leave out the optional arguments of `construct_policies` such as `n_control` and `control_fac_idx`
        n_states = [3]

        # one step policies
        policy_len = 1

        policies, n_control = core.construct_policies(n_states, None,
                                                      policy_len, None)
        self.assertEqual(len(policies), n_control[0])
        self.assertEqual(n_states[0], n_control[0])
        for policy in policies:
            self.assertEqual(policy.shape[0], policy_len)

        # multistep step policies
        policy_len = 3

        policies, n_control = core.construct_policies(n_states, None,
                                                      policy_len, None)
        self.assertEqual(n_states[0], n_control[0])
        for policy in policies:
            self.assertEqual(policy.shape[0], policy_len)
Ejemplo n.º 2
0
    def test_state_info_gain(self):
        """
        Test the states_info_gain function. Demonstrates working
        by manipulating uncertainty in the likelihood matrices (A or B)
        in a ways that alternatively change the resolvability of uncertainty
        (via an imprecise expected state and a precise mapping, or high ambiguity
        and imprecise mapping).
        """

        n_states = [2]
        n_control = [2]

        qs = Categorical(values=np.eye(n_states[0])[0])

        # add some uncertainty into the consequences of the second policy, which
        # leads to increased epistemic value of observations, in case of pursuing
        # that policy -- in the case of a precise observation likelihood model
        B_matrix = construct_generic_B(n_states, n_control)
        B_matrix[:, :, 1] = core.softmax(B_matrix[:, :, 1])
        B = Categorical(values=B_matrix)

        # single timestep
        n_step = 1
        policies = core.construct_policies(n_states,
                                           n_control,
                                           policy_len=n_step)

        # single observation modality
        num_obs = [2]

        # create noiseless identity A matrix
        A = Categorical(values=np.eye(num_obs[0]))

        state_info_gains = np.zeros(len(policies))

        for idx, policy in enumerate(policies):

            qs_pi = core.get_expected_states(qs, B, policy)

            state_info_gains[idx] += core.calc_states_info_gain(A, qs_pi)

        self.assertGreater(state_info_gains[1], state_info_gains[0])

        # we can 'undo' the epistemic bonus of the second policy by making the A matrix
        # totally ambiguous, thus observations cannot resolve uncertainty about hidden states
        # - in this case, uncertainty in the posterior beliefs doesn't matter

        A = Categorical(values=np.ones((num_obs[0], num_obs[0])))
        A.normalize()

        state_info_gains = np.zeros(len(policies))

        for idx, policy in enumerate(policies):

            qs_pi = core.get_expected_states(qs, B, policy)

            state_info_gains[idx] += core.calc_states_info_gain(A, qs_pi)

        self.assertEqual(state_info_gains[0], state_info_gains[1])
Ejemplo n.º 3
0
    def test_pA_info_gain(self):
        """
        Test the pA_info_gain function. Demonstrates operation
        by manipulating shape of the Dirichlet priors over likelihood parameters
        (pA), which affects information gain for different expected observations
        """

        n_states = [2]
        n_control = [2]

        qs = Categorical(values=np.eye(n_states[0])[0])

        B = Categorical(values=construct_generic_B(n_states, n_control))

        # single timestep
        n_step = 1
        policies = core.construct_policies(n_states,
                                           n_control,
                                           policy_len=n_step)

        # single observation modality
        num_obs = [2]

        # create noiseless identity A matrix
        A = Categorical(values=np.eye(num_obs[0]))

        # create prior over dirichlets such that there is a skew
        # in the parameters about the likelihood mapping from the
        # second hidden state (index 1) to observations, such that one
        # observation is considered to be more likely than the other conditioned on that state.
        # Therefore sampling that observation would afford high info gain
        # about parameters for that part of the likelhood distribution.

        pA_matrix = construct_pA(num_obs, n_states)
        pA_matrix[0, 1] = 2.0
        pA = Dirichlet(values=pA_matrix)

        pA_info_gains = np.zeros(len(policies))

        for idx, policy in enumerate(policies):

            qs_pi = core.get_expected_states(qs, B, policy)
            qo_pi = core.get_expected_obs(qs_pi, A)

            pA_info_gains[idx] += core.calc_pA_info_gain(pA, qo_pi, qs_pi)

        self.assertGreater(pA_info_gains[1], pA_info_gains[0])
Ejemplo n.º 4
0
    def test_pB_info_gain(self):
        """
        Test the pB_info_gain function. Demonstrates operation
        by manipulating shape of the Dirichlet priors over likelihood parameters
        (pB), which affects information gain for different states
        """

        n_states = [2]
        n_control = [2]

        qs = Categorical(values=np.eye(n_states[0])[0])

        B = Categorical(values=construct_generic_B(n_states, n_control))
        pB_matrix = construct_pB(n_states, n_control)

        # create prior over dirichlets such that there is a skew
        # in the parameters about the likelihood mapping from the
        # hidden states to hidden states under the second action,
        # such that hidden state 0 is considered to be more likely than the other,
        # given the action in question
        # Therefore taking that action would yield an expected state that afford
        # high information gain about that part of the likelihood distribution.
        #
        pB_matrix[0, :, 1] = 2.0
        pB = Dirichlet(values=pB_matrix)

        # single timestep
        n_step = 1
        policies = core.construct_policies(n_states,
                                           n_control,
                                           policy_len=n_step)

        pB_info_gains = np.zeros(len(policies))

        for idx, policy in enumerate(policies):

            qs_pi = core.get_expected_states(qs, B, policy)

            pB_info_gains[idx] += core.calc_pB_info_gain(pB, qs_pi, qs, policy)

        self.assertGreater(pB_info_gains[1], pB_info_gains[0])
Ejemplo n.º 5
0
scenes[1][1, 1] = 2
scenes[1][1, 0] = 3

env = VisualForagingEnv(scenes=scenes, n_features=3)
A = env.get_likelihood_dist()
B = env.get_transition_dist()

# if you want parameter information gain and/or learning
# pA = Dirichlet(values = A.values * 1e20)
# pB = Dirichlet(values = B.values * 1e20)

C = np.empty(env.n_modalities, dtype=object)
for g, No in enumerate(env.n_observations):
    C[g] = np.zeros(No)

_, possible_policies = core.construct_policies(env.n_states, env.n_factors, [0], 1)

obs = env.reset()

msg = """ === Starting experiment === \n True scene: {} Initial observation {} """
print(msg.format(env.true_scene, obs))
prior = env.get_uniform_posterior()

for t in range(T):

    Qs = core.update_posterior_states(A, obs, prior, return_numpy=False)

    msg = """[{}] Inference [location {} / scene {}] 
     Observation [location {} / feature {}] """
    print(msg.format(t, Qs[0].sample(), Qs[1].sample(), obs[0], obs[1]))
Ejemplo n.º 6
0
scenes[1][1, 1] = 2
scenes[1][1, 0] = 3

env = VisualForagingEnv(scenes=scenes, n_features=3)
A = env.get_likelihood_dist()
B = env.get_transition_dist()

# if you want parameter information gain and/or learning
# pA = Dirichlet(values = A.values * 1e20)
# pB = Dirichlet(values = B.values * 1e20)

C = np.empty(env.n_modalities, dtype=object)
for g, No in enumerate(env.n_observations):
    C[g] = np.zeros(No)

policies, n_control = core.construct_policies(env.n_states, None, 1, [0])

obs = env.reset()

msg = """ === Starting experiment === \n True scene: {} Initial observation {} """
print(msg.format(env.true_scene, obs))
prior = env.get_uniform_posterior()

for t in range(T):

    qs = core.update_posterior_states(A, obs, prior, return_numpy=False)

    msg = """[{}] Inference [location {} / scene {}] 
     Observation [location {} / feature {}] """
    print(
        msg.format(t, np.argmax(qs[0].values), np.argmax(qs[1].values), obs[0],
Ejemplo n.º 7
0
    def test_expected_utility(self):
        """
        Test for the expected utility function, for a simple single factor generative model 
        where there are imbalances in the preferences for different outcomes. Test for both single
        timestep policy horizons and multiple timestep horizons
        """

        n_states = [2]
        n_control = [2]

        qs = Categorical(values=construct_init_qs(n_states))
        B = Categorical(values=construct_generic_B(n_states, n_control))

        # single timestep
        n_step = 1
        policies = core.construct_policies(n_states,
                                           n_control,
                                           policy_len=n_step)

        # single observation modality
        num_obs = [2]

        # create noiseless identity A matrix
        A = Categorical(values=np.eye(num_obs[0]))

        # create imbalance in preferences for observations
        C = Categorical(values=np.eye(num_obs[0])[1])

        utilities = np.zeros(len(policies))

        for idx, policy in enumerate(policies):

            qs_pi = core.get_expected_states(qs, B, policy)
            qo_pi = core.get_expected_obs(qs_pi, A)

            utilities[idx] += core.calc_expected_utility(qo_pi, C)

        self.assertGreater(utilities[1], utilities[0])

        n_states = [3]
        n_control = [3]

        qs = Categorical(values=construct_init_qs(n_states))
        B = Categorical(values=construct_generic_B(n_states, n_control))

        # 3-step policies -- one involves going to state 0 two times in a row, and then state 2 at the end
        #                 -- one involves going to state 1 three times in a row

        policies = [
            np.array([0, 0, 2]).reshape(-1, 1),
            np.array([1, 1, 1]).reshape(-1, 1)
        ]

        # single observation modality
        num_obs = [3]

        # create noiseless identity A matrix
        A = Categorical(values=np.eye(num_obs[0]))

        # create imbalance in preferences for observations
        # this is designed to illustrate the time-integrated nature of the expected free energy
        #  -- even though the first observation (index 0) is the most preferred, the policy
        # that frequents this observation the most is actually not optimal, because that policy
        # ends up visiting a less preferred state at the end.
        C = Categorical(values=np.array([1.2, 1, 0.5]))

        utilities = np.zeros(len(policies))

        for idx, policy in enumerate(policies):

            qs_pi = core.get_expected_states(qs, B, policy)
            qo_pi = core.get_expected_obs(qs_pi, A)

            utilities[idx] += core.calc_expected_utility(qo_pi, C)

        self.assertGreater(utilities[1], utilities[0])
Ejemplo n.º 8
0
    def test_multistep_multifac_posteriorPolicies(self):
        """
        Test for computing posterior over policies (and associated expected free energies)
        in the case of a posterior over hidden states with multiple hidden state factors. 
        This version tests using a policy horizon of 3 steps ahead
        """

        n_states = [3, 4]
        n_control = [3, 4]

        qs = Categorical(values=construct_init_qs(n_states))
        B = Categorical(values=construct_generic_B(n_states, n_control))
        pB = Dirichlet(values=construct_pB(n_states, n_control))

        # single timestep
        n_step = 3
        policies = core.construct_policies(n_states,
                                           n_control,
                                           policy_len=n_step)

        # single observation modality
        num_obs = [4]

        A = Categorical(values=construct_generic_A(num_obs, n_states))
        pA = Dirichlet(values=construct_pA(num_obs, n_states))
        C = Categorical(values=construct_generic_C(num_obs))

        q_pi, efe = core.update_posterior_policies(qs,
                                                   A,
                                                   B,
                                                   C,
                                                   policies,
                                                   use_utility=True,
                                                   use_states_info_gain=True,
                                                   use_param_info_gain=True,
                                                   pA=pA,
                                                   pB=pB,
                                                   gamma=16.0,
                                                   return_numpy=True)

        self.assertEqual(len(q_pi), len(policies))
        self.assertEqual(len(efe), len(policies))

        # multiple observation modalities
        num_obs = [3, 2]

        A = Categorical(values=construct_generic_A(num_obs, n_states))
        pA = Dirichlet(values=construct_pA(num_obs, n_states))
        C = Categorical(values=construct_generic_C(num_obs))

        q_pi, efe = core.update_posterior_policies(qs,
                                                   A,
                                                   B,
                                                   C,
                                                   policies,
                                                   use_utility=True,
                                                   use_states_info_gain=True,
                                                   use_param_info_gain=True,
                                                   pA=pA,
                                                   pB=pB,
                                                   gamma=16.0,
                                                   return_numpy=True)

        self.assertEqual(len(q_pi), len(policies))
        self.assertEqual(len(efe), len(policies))