Ejemplo n.º 1
0
 def test_12_34_and_zeros(self):
     """Compute mi for identical arrays [[1, 2], [2, 4]]."""
     self.y_dataframe = InferelatorData(expression_data=np.zeros((2, 2)))
     self.clr_matrix, self.mi_matrix = mi.context_likelihood_mi(
         self.x_dataframe, self.y_dataframe)
     # the entire clr matrix is NAN
     self.assertTrue(np.isnan(self.clr_matrix.values).all())
Ejemplo n.º 2
0
 def test_12_34_swapped(self):
     """Compute mi for identical arrays [[1, 2], [2, 4]]."""
     self.y_dataframe = L2.copy()
     self.clr_matrix, self.mi_matrix = mi.context_likelihood_mi(
         self.x_dataframe, self.y_dataframe)
     expected = np.array([[0, 1], [1, 0]])
     np.testing.assert_almost_equal(self.clr_matrix.values, expected)
Ejemplo n.º 3
0
 def test_12_34_transposed(self):
     "Compute mi for identical arrays [[1, 2], [2, 4]]."
     self.y_dataframe = InferelatorData(
         expression_data=np.array([[1, 2], [3, 4]]))
     self.clr_matrix, self.mi_matrix = mi.context_likelihood_mi(
         self.x_dataframe, self.y_dataframe)
     expected = np.array([[0, 1], [1, 0]])
     np.testing.assert_almost_equal(self.clr_matrix.values, expected)