Ejemplo n.º 1
0
    def testMarkovChainLogprobMatchesOriginal(self):
        # Use a very short dataset since the non-markov-chain model is slow.
        dataset = data.sp500_returns(num_points=10)
        model = stochastic_volatility.StochasticVolatility(
            use_markov_chain=False, **dataset)
        markov_chain_model = stochastic_volatility.StochasticVolatility(
            use_markov_chain=True, **dataset)

        xs = self.evaluate(model.prior_distribution().sample(
            10, seed=tfp_test_util.test_seed()))
        xs_stacked = xs[:-1] + (tf.stack(xs[-1], axis=-1), )
        self.assertAllClose(
            model.unnormalized_log_prob(xs),
            markov_chain_model.unnormalized_log_prob(xs_stacked),
            atol=1e-2)
Ejemplo n.º 2
0
 def testBasic(self):
     """Checks that unconstrained parameters yield finite joint densities."""
     model = stochastic_volatility.StochasticVolatility(
         centered_returns=tf.convert_to_tensor([5., -2.1, 8., 4., 1.1]))
     self.validate_log_prob_and_transforms(
         model,
         sample_transformation_shapes=dict(
             identity={
                 'persistence_of_volatility': [],
                 'mean_log_volatility': [],
                 'white_noise_shock_scale': [],
                 'log_volatility': [5]
             }))