def CAOSpy_run(tstart,tstop,mc,pdyn,particles,leftover,drained): timenow=tstart #loop through time while timenow < tstop: print 'time:',timenow [thS,npart]=pdyn.gridupdate_thS(particles.lat,particles.z,mc) #define dt as Curant criterion dt_D=(mc.mgrid.vertfac.values[0])**2 / (2*np.amax(mc.D[np.amax(thS),:])) dt_ku=-mc.mgrid.vertfac.values[0]/np.amax(mc.ku[np.amax(thS),:]) dt=np.amin([dt_D,dt_ku]) #INFILT p_inf=cinf.pmx_infilt(timenow,precTS,mc,dt,leftover) #print timenow #print p_inf particlesnow=pd.concat([particles,p_inf]) #p_backup=particlesnow.copy() #DIFFUSION [particlesnow,thS,npart,phi_mx]=pdyn.part_diffusion_split(particlesnow,npart,thS,mc,dt,True,10) #ADVECTION particlesnow=pdyn.mac_advection(particlesnow,mc,thS,dt) #drained particles drained=drained.append(particlesnow[particlesnow.flag==len(mc.maccols)+1]) particlesnow=particlesnow[particlesnow.flag!=len(mc.maccols)+1] #MX-MAC-INTERACTION pdyn.mx_mp_interact(particlesnow,npart,thS,mc,dt) pondparts=(particlesnow.z<0.) leftover=np.count_nonzero(-pondparts) particles=particlesnow[pondparts] timenow=timenow+dt return(particles,npart,thS,leftover,drained,timenow)
def CAOSpy_run(tstart,tstop,dt,mc,pdyn,particles,leftover,drained): xstart=np.int64(tstart/dt) xstop=np.int64(tstop/dt) #loop through time for t in np.arange(xstop-xstart)+xstart: timenow=t*dt print 'time:',timenow [thS,npart]=pdyn.gridupdate_thS(particles.lat,particles.z,mc) #INFILT p_inf=cinf.pmx_infilt(timenow,precTS,mc,dt,leftover) #print timenow #print p_inf particlesnow=pd.concat([particles,p_inf]) #p_backup=particlesnow.copy() #DIFFUSION [particlesnow,thS,npart,phi_mx]=pdyn.part_diffusion_split(particlesnow,npart,thS,mc,dt,True,10) #ADVECTION #particlesnow=pdyn.mac_advection(particlesnow,mc,thS,dt) #drained particles drained=drained.append(particlesnow[particlesnow.flag==len(mc.maccols)+1]) particlesnow=particlesnow[particlesnow.flag!=len(mc.maccols)+1] #MX-MAC-INTERACTION pdyn.mx_mp_interact(particlesnow,npart,thS,mc,dt) pondparts=(particlesnow.z<0.) leftover=np.count_nonzero(-pondparts) particles=particlesnow[pondparts] return(particles,npart,thS,leftover,drained,timenow)
def CAOSpy_rundx_noise(tstart,tstop,mc,pdyn,cinf,precTS,particles,leftover,drained,dt_max=1.,splitfac=10,prec_2D=False,maccoat=10.,exfilt_method='Ediss',saveDT=True,vertcalfac=1.,latcalfac=1.,clogswitch=False,infilt_method='MDA',film=True,dynamic_pedo=True,ksnoise=1.): if run_from_ipython(): from IPython import display timenow=tstart prec_part=0. #precipitation which is less than one particle to accumulate acc_mxinf=0. #matrix infiltration may become very small - this shall handle that some particles accumulate to infiltrate exfilt_p=0. #exfiltration from the macropores s_red=0. #loop through time while timenow < tstop: [thS,npart]=pdyn.gridupdate_thS(particles.lat,particles.z,mc) if saveDT==True: #define dt as Courant/Neumann criterion dt_D=(mc.mgrid.vertfac.values[0])**2 / (6*np.nanmax(mc.D[np.amax(thS),:])) dt_ku=-mc.mgrid.vertfac.values[0]/np.nanmax(mc.ku[np.amax(thS),:]) dt=np.amin([dt_D,dt_ku,dt_max,tstop-timenow]) else: if type(saveDT)==float: #define dt as pre-defined dt=np.amin([saveDT,tstop-timenow]) elif type(saveDT)==int: #define dt as modified Corant/Neumann criterion dt_D=(mc.mgrid.vertfac.values[0])**2 / (6*np.nanmax(mc.D[np.amax(thS),:]))*saveDT dt_ku=-mc.mgrid.vertfac.values[0]/np.nanmax(mc.ku[np.amax(thS),:])*saveDT dt=np.amin([dt_D,dt_ku,dt_max,tstop-timenow]) #INFILTRATION [p_inf,prec_part,acc_mxinf]=cinf.pmx_infilt(timenow,precTS,prec_part,acc_mxinf,thS,mc,pdyn,dt,0.,prec_2D,particles.index[-1],infilt_method) #drain all ponding // leftover <-> 0. particles=pd.concat([particles,p_inf]) #DIFFUSION [particles,thS,npart,phi_mx]=pdyn.part_diffusion_split(particles,npart,thS,mc,dt,False,splitfac,vertcalfac,latcalfac,dynamic_pedo=True,ksnoise=ksnoise) #ADVECTION if not particles.loc[(particles.flag>0) & (particles.flag<len(mc.maccols)+1)].empty: [particles,s_red,exfilt_p]=pdyn.mac_advection(particles,mc,thS,dt,clogswitch,maccoat,exfilt_method,film=film,dynamic_pedo=True,ksnoise=ksnoise) #INTERACT particles=pdyn.mx_mp_interact_nobulk(particles,npart,thS,mc,dt,dynamic_pedo=True,ksnoise=ksnoise) if run_from_ipython(): display.clear_output() display.display_pretty(''.join(['time: ',str(timenow),'s | precip: ',str(len(p_inf)),' particles | mean v(adv): ',str(particles.loc[particles.flag>0,'advect'].mean()),' m/s | exfilt: ',str(int(exfilt_p)),' particles'])) else: print 'time: ',timenow,'s' #CLEAN UP DATAFRAME drained=drained.append(particles[particles.flag==len(mc.maccols)+1]) particles=particles[particles.flag!=len(mc.maccols)+1] pondparts=(particles.z<0.) leftover=np.count_nonzero(-pondparts) particles.cell[particles.cell<0]=mc.mgrid.cells.values particles=particles[pondparts] timenow=timenow+dt return(particles,npart,thS,leftover,drained,timenow)
def CAOSpy_rundx1(tstart, tstop, mc, pdyn, cinf, precTS, particles, leftover=0, drained=0.1, dt_max=1., splitfac=10, prec_2D=False, maccoat=10., exfilt_method='Ediss', saveDT=True, vertcalfac=1., latcalfac=1., clogswitch=False, infilt_method='MDA', film=True, infiltscale=False, dynamic_pedo=False, counteractpow=3): if run_from_ipython(): from IPython import display timenow = tstart prec_part = 0. #precipitation which is less than one particle to accumulate acc_mxinf = 0. #matrix infiltration may become very small - this shall handle that some particles accumulate to infiltrate exfilt_p = 0. #exfiltration from the macropores s_red = 0. mc.splitfac = splitfac mc.counteract_pow = counteractpow if type(drained) == float: drained = pd.DataFrame(np.array([])) #loop through time while timenow < tstop: [thS, npart] = pdyn.gridupdate_thS(particles.lat, particles.z, mc) if saveDT == True: #define dt as Courant/Neumann criterion dt_D = (mc.mgrid.vertfac.values[0])**2 / ( 6 * np.amax(mc.D[particles.LTEbin.max(), :])) dt_ku = -mc.mgrid.vertfac.values[0] / np.amax( mc.ku[particles.LTEbin.max(), :]) dt = np.amin([dt_D, dt_ku, dt_max, tstop - timenow]) dt = np.amax([dt, 0.5]) mc.dt = dt else: if type(saveDT) == float: #define dt as pre-defined dt = np.amin([saveDT, tstop - timenow]) mc.dt = dt elif type(saveDT) == int: #define dt as modified Corant/Neumann criterion dt_D = (mc.mgrid.vertfac.values[0])**2 / ( 6 * np.nanmax(mc.D[np.amax(thS), :])) * saveDT dt_ku = -mc.mgrid.vertfac.values[0] / np.nanmax( mc.ku[np.amax(thS), :]) * saveDT dt = np.amin([dt_D, dt_ku, dt_max, tstop - timenow]) mc.dt = dt pcount = len(particles) #INFILTRATION (new version with binned) [p_inf, prec_part, acc_mxinf ] = cinf.pmx_infilt(timenow, precTS, prec_part, acc_mxinf, thS, mc, pdyn, mc.dt, leftover, prec_2D, particles.index[-1], infilt_method, infiltscale, npart) #drain all ponding // leftover <-> 0. particles = pd.concat([particles, p_inf]) #DEBUG: #if len(particles)<100000: # particles.to_pickle('DEBUG_particlesX.pic') # assert False #particles.to_pickle('DEBUG_particles.pic') #particles=particles.groupby('cell').apply(pdyn.binupdate_pd,mc) #particles.loc[particles.LTEbin>(len(mc.ku)-1),'LTEbin']=len(mc.ku)-1 #plot_mac(particles,'./results/Mtest'+str(np.round(timenow,2))) #DIFFUSION #[particles,thS,npart,phi_mx]=pdyn.part_diffusion_split(particles,npart,thS,mc,dt,False,splitfac,vertcalfac,latcalfac) #[particles,thS,npart,phi_mx]=pdyn.part_diffusion_binned(particles,npart,thS,mc,dt) [particles, thS, npart, phi_mx] = pdyn.part_diffusion_binned_pd(particles, npart, thS, mc) #ADVECTION if not particles.loc[(particles.flag > 0) & (particles.flag < len(mc.maccols) + 1)].empty: [particles, s_red, exfilt_p, mc] = pdyn.mac_advectionX(particles, mc, thS, mc.dt, clogswitch, maccoat, exfilt_method, film=film, dynamic_pedo=dynamic_pedo, npart=npart, fc_check=False) #INTERACT particles = pdyn.mx_mp_interact_nobulk(particles, npart, thS, mc, mc.dt, dynamic_pedo) #CLEAN UP DATAFRAME drained = drained.append(particles[particles.flag == len(mc.maccols) + 1]) particles = particles.loc[particles.flag != len(mc.maccols) + 1] #leftover+=np.intp((particles.z>=0.).sum()) leftover = particles.z[particles.z >= 0.].count() particles = particles.loc[ particles.z < 0.] #drop all leftover back to infilt routine if run_from_ipython(): display.clear_output() display.display_pretty(''.join([ 'time: ', str(timenow), 's | n_particles: ', str(pcount), ' | precip: ', str(len(p_inf)), ' | advect: ', str( np.sum(((particles.flag > 0) & (particles.flag <= len(mc.maccols))))), ' | exfilt: ', str(int(exfilt_p)), ' | mean v(adv): ', str(particles.loc[((particles.flag > 0) & (particles.flag <= len(mc.maccols))), 'advect'].mean())[:7] + str(particles.loc[((particles.flag > 0) & (particles.flag <= len(mc.maccols))), 'advect'].mean())[-4:], ' m/s' ])) display.display_pretty(''.join([ 'time: ', str(timenow), 's | n_particles now: ', str(len(particles)), ' | leftover: ', str(leftover) ])) else: print('time: ', timenow, 's') #particles.loc[particles.cell<0,'cell']=mc.mgrid.cells.values #particles=particles[pondparts] timenow = timenow + mc.dt return (particles, npart, thS, leftover, drained, timenow)
def CAOSpy_rund_diffonly(tstart, tstop, mc, pdyn, cinf, precTS, particles, leftover, drained, dt_max=1., splitfac=10, prec_2D=False, saveDT=True, vertcalfac=1., latcalfac=1.): if run_from_ipython(): from IPython import display timenow = tstart prec_part = 0. #precipitation which is less than one particle to accumulate acc_mxinf = 0. #matrix infiltration may become very small - this shall handle that some particles accumulate to infiltrate exfilt_p = 0. #exfiltration from the macropores s_red = 0. #loop through time while timenow < tstop: [thS, npart] = pdyn.gridupdate_thS(particles.lat, particles.z, mc) if saveDT == True: #define dt as Courant/Neumann criterion dt_D = (mc.mgrid.vertfac.values[0])**2 / ( 6 * np.nanmax(mc.D[np.amax(thS), :])) dt_ku = -mc.mgrid.vertfac.values[0] / np.nanmax( mc.ku[np.amax(thS), :]) dt = np.amin([dt_D, dt_ku, dt_max, tstop - timenow]) else: if type(saveDT) == float: #define dt as pre-defined dt = np.amin([saveDT, tstop - timenow]) elif type(saveDT) == int: #define dt as modified Corant/Neumann criterion dt_D = (mc.mgrid.vertfac.values[0])**2 / ( 6 * np.nanmax(mc.D[np.amax(thS), :])) * saveDT dt_ku = -mc.mgrid.vertfac.values[0] / np.nanmax( mc.ku[np.amax(thS), :]) * saveDT dt = np.amin([dt_D, dt_ku, tstop - timenow]) #INFILTRATION [p_inf, prec_part, acc_mxinf] = cinf.pmx_infilt( timenow, precTS, prec_part, acc_mxinf, thS, mc, pdyn, dt, 0., prec_2D, particles.index[-1]) #drain all ponding // leftover <-> 0. p_inf.flag = 0 particles = pd.concat([particles, p_inf]) #DIFFUSION [particles, thS, npart, phi_mx] = pdyn.part_diffusion_split(particles, npart, thS, mc, dt, False, splitfac, vertcalfac, latcalfac) if run_from_ipython(): display.clear_output() display.display_pretty(''.join([ 'time: ', str(timenow), 's | precip: ', str(len(p_inf)), ' particles' ])) else: print 'time: ', timenow, 's' #CLEAN UP DATAFRAME drained = drained.append(particles[particles.flag == len(mc.maccols) + 1]) particles = particles[particles.flag != len(mc.maccols) + 1] pondparts = (particles.z < 0.) leftover = np.count_nonzero(-pondparts) particles.cell[particles.cell < 0] = mc.mgrid.cells.values particles = particles[pondparts] timenow = timenow + dt return (particles, npart, thS, leftover, drained, timenow)