def main(): print_instruction() board = [] for i in range(9): board.append(-1) win = False move = 0 while not win: print_board(board) print "Turn number" + str(move + 1) if move % 2 == 0: turn = 'X' else: turn = 'O' user = get_input(turn) while board[user] != -1: print "Invalid move! Cell already taken. Please try again.\n" user = get_input(turn) board[user] = 1 if turn == 'X' else 0 move += 1 if move > 4: winner = check_win(board) if winner != -1: out = "The winner is" out += "X" if winner == 1 else "O" out += "=D" quit_game(board, out) elif move >= 9: quit_game(board, "No winner :(")
def main(): print_instruction() board = [] for i in range(9): board.append(-1) win = False move = 0 while not win: print_board(board) print "Turn number" + str(move+1) if move % 2 == 0: turn = 'X' else: turn = 'O' user = get_input(turn) while board[user] != -1: print "Invalid move! Cell already taken. Please try again.\n" user = get_input(turn) board[user] = 1 if turn == 'X' else 0 move += 1 if move > 4: winner = check_win(board) if winner != -1: out = "The winner is" out += "X" if winner == 1 else "O" out += "=D" quit_game(board,out) elif move >= 9: quit_game(board, "No winner :(")
def set_grep_word(stdscr): word = get_input(stdscr, "Grep for: ") tab.get_current_tab().grep = word tab.get_current_tab().name = word # Clear screen is required since the word size (in the tab) could have changed globvar.clear_screen = True globvar.redraw = True
def train(): with tf.Graph().as_default(): global_step = tf.Variable(0, trainable=False) image, label = input.get_input(LABEL_PATH, LABEL_FORMAT, IMAGE_PATH, IMAGE_FORMAT) logits = model.inference(image) loss = model.loss(logits, label) train_op = model.train(loss, global_step) saver = tf.train.Saver(tf.all_variables()) summary_op = tf.merge_all_summaries() init = tf.initialize_all_variables() sess = tf.Session(config=tf.ConfigProto(log_device_placement=input.FLAGS.log_device_placement)) sess.run(init) # Start the queue runners. tf.train.start_queue_runners(sess=sess) summary_writer = tf.train.SummaryWriter(input.FLAGS.train_dir, graph_def=sess.graph_def) for step in xrange(input.FLAGS.max_steps): start_time = time.time() _, loss_value = sess.run([train_op, loss]) duration = time.time() - start_time assert not np.isnan(loss_value), "Model diverged with loss = NaN" if step % 1 == 0: num_examples_per_step = input.FLAGS.batch_size examples_per_sec = num_examples_per_step / duration sec_per_batch = float(duration) format_str = "%s: step %d, loss = %.2f (%.1f examples/sec; %.3f sec/batch)" print(format_str % (datetime.now(), step, loss_value, examples_per_sec, sec_per_batch)) if step % 10 == 0: summary_str = sess.run(summary_op) summary_writer.add_summary(summary_str, step) # Save the model checkpoint periodically. if step % 25 == 0: checkpoint_path = os.path.join(input.FLAGS.train_dir, "model.ckpt") saver.save(sess, checkpoint_path, global_step=step)
def get_filters(): """ Asks user to specify a city, month, and day to analyze. Returns: (str) city - name of the city to analyze (str) month - name of the month to filter by, or "all" to apply no month filter (str) day - name of the day of week to filter by, or "all" to apply no day filter """ print('Hello! Let\'s explore some US bikeshare data!\n') # TO DO: get user input for city (chicago, new york city, washington) while True: city = inp.get_input('Please input the city name:- (chicago), or (new york city), or (washington):__ ', ['chicago', 'new york city', 'washington']) if city in ['chicago', 'new york city', 'washington']: break # TO DO: get user input for month (all, january, february, ... , june) while True: month = inp.get_input('\nWhich month? january, february, march, april, may, june, all?__ ', ['january', 'february', 'march', 'april', 'may', 'june', 'july', 'august', 'september', 'october', 'november', 'december', 'all']) try: month.index(month) except: continue else: break # TO DO: get user input for day of week (all, monday, tuesday, ... sunday) while True: day = inp.get_input('\nWhich day? monday, tuesday, wednesday, thursday, friday, saturday, sunday, all?__ ', ['monday', 'tuesday', 'wednesday', 'thursday', 'friday', 'saturday', 'sunday', 'all']) try: day.index(day) except: continue else: break print('-' * 40) return city, month, day
def main(): print_instruction() board = [] for i in range(9): board.append(-1) win = False move = 0 while not win: print_board(board) print "Turn number" + str(move+1) if move % 2 == 0: #this is the user turn = 'X' user = get_input(turn) while board[user] != -1: print "Invalid move! Cell already taken. Please try again.\n" user = get_input(turn) board[user] = 1 else: #this will be the computer turn = 'O' comp=generate_o(board)#computer behaviour define board[comp]=0 move += 1 if move > 4: winner = check_win(board) if winner != -1: out = "The winner is" out += "X" if winner == 1 else "O" out += "=D" quit_game(board,out) elif move >= 9: quit_game(board, "No winner :(")
def do_fizzbuzz(): try: user_input = get_input() end = user_input curr = 1 while curr < end: if curr % 3 == 0: print("fizz") elif curr % 5 == 0: print("buzz") elif curr % 15 == 0: print("fizzbuzz") else: print(curr) curr += 1 except ValueError: return
def test(): with tf.Graph().as_default(): image, label = input.get_input(LABEL_PATH, LABEL_FORMAT, IMAGE_PATH, IMAGE_FORMAT) logits = model.inference(image) top_k_op = tf.nn.in_top_k(logits, label, 1) variable_averages = tf.train.ExponentialMovingAverage(MOVING_AVERAGE_DECAY) variables_to_restore = variable_averages.variables_to_restore() saver = tf.train.Saver(variables_to_restore) # Get summaries for TENSOR BOARD summary_op = tf.merge_all_summaries() graph_def = tf.get_default_graph().as_graph_def() summary_writer = tf.train.SummaryWriter(input.FLAGS.eval_dir, graph_def=graph_def) while True: evaluate_model(saver, summary_writer, top_k_op, summary_op) if input.FLAGS.run_once: break time.sleep(input.FLAGS.eval_interval_secs)
def train(): with tf.Graph().as_default(): global_step = tf.Variable(0, trainable=False) image, label = input.get_input(LABEL_PATH, LABEL_FORMAT, IMAGE_PATH, IMAGE_FORMAT) logits = model.inference(image) loss = model.loss(logits, label) train_op = model.train(loss, global_step) saver = tf.train.Saver(tf.all_variables()) summary_op = tf.merge_all_summaries() init = tf.initialize_all_variables() sess = tf.Session(config=tf.ConfigProto( log_device_placement=input.FLAGS.log_device_placement)) sess.run(init) # Start the queue runners. tf.train.start_queue_runners(sess=sess) summary_writer = tf.train.SummaryWriter(input.FLAGS.train_dir, graph_def=sess.graph_def) for step in xrange(input.FLAGS.max_steps): start_time = time.time() _, loss_value = sess.run([train_op, loss]) duration = time.time() - start_time assert not np.isnan(loss_value), 'Model diverged with loss = NaN' if step % 1 == 0: num_examples_per_step = input.FLAGS.batch_size examples_per_sec = num_examples_per_step / duration sec_per_batch = float(duration) format_str = ( '%s: step %d, loss = %.2f (%.1f examples/sec; %.3f sec/batch)' ) print(format_str % (datetime.now(), step, loss_value, examples_per_sec, sec_per_batch)) if step % 10 == 0: summary_str = sess.run(summary_op) summary_writer.add_summary(summary_str, step) # Save the model checkpoint periodically. if step % 25 == 0: checkpoint_path = os.path.join(input.FLAGS.train_dir, 'model.ckpt') saver.save(sess, checkpoint_path, global_step=step)
'| | | | | | | | | | |', '+ -- + -- + -- + -- + -- + -- + -- + -- + -- + -- +', '| | | | | | | | | | |', '+ -- + -- + -- + -- + -- + -- + -- + -- + -- + -- +', '| | | | | | | | | | |', '+ -- + -- + -- + -- + -- + -- + -- + -- + -- + -- +', '| | | | | | | | | | |', '+ -- + -- + -- + -- + -- + -- + -- + -- + -- + -- +', '| | | | | | | | | | |', '+ -- + -- + -- + -- + -- + -- + -- + -- + -- + -- +', '| | | | | | | | | | |', '+ -- + -- + -- + -- + -- + -- + -- + -- + -- + -- +', '| | | | | | | | | | |', '+ -- + -- + -- + -- + -- + -- + -- + -- + -- + -- +', '| | | | | | | | | | |', '+ -- + -- + -- + -- + -- + -- + -- + -- + -- + -- +'] SHIP_LIST = [('Destroyer', 2, 'd2'), ('Cruiser', 3, 'c3'), ('Submarine', 3, 's3'), ('Battleship', 4, 'b4'), ('Aircraft Carrier', 5, 'a5')] if __name__ == '__main__': board = BLANK_BOARD taken = set() for ship_tuple in SHIP_LIST: board, taken = get_input(board, ship_tuple, taken)
def highlight(stdscr): globvar.redraw = True word = get_input(stdscr, "Highlight word: ") if not word: return tab.get_current_tab().highlight.append(word)
def goto_backward(stdscr): globvar.redraw = True word = get_input(stdscr, "Go to: ") if not word: return tab.get_current_tab().goto = (word, BACK)
def main(): input_string = input.get_input() vowels = count_vowels(input_string, True) vowel_summary(vowels)
'| | | | | | | | | | |', '+ -- + -- + -- + -- + -- + -- + -- + -- + -- + -- +', '| | | | | | | | | | |', '+ -- + -- + -- + -- + -- + -- + -- + -- + -- + -- +', '| | | | | | | | | | |', '+ -- + -- + -- + -- + -- + -- + -- + -- + -- + -- +', '| | | | | | | | | | |', '+ -- + -- + -- + -- + -- + -- + -- + -- + -- + -- +', '| | | | | | | | | | |', '+ -- + -- + -- + -- + -- + -- + -- + -- + -- + -- +', '| | | | | | | | | | |', '+ -- + -- + -- + -- + -- + -- + -- + -- + -- + -- +', '| | | | | | | | | | |', '+ -- + -- + -- + -- + -- + -- + -- + -- + -- + -- +', '| | | | | | | | | | |', '+ -- + -- + -- + -- + -- + -- + -- + -- + -- + -- +', '| | | | | | | | | | |', '+ -- + -- + -- + -- + -- + -- + -- + -- + -- + -- +' ] SHIP_LIST = [('Destroyer', 2, 'd2'), ('Cruiser', 3, 'c3'), ('Submarine', 3, 's3'), ('Battleship', 4, 'b4'), ('Aircraft Carrier', 5, 'a5')] if __name__ == '__main__': board = BLANK_BOARD taken = set() for ship_tuple in SHIP_LIST: board, taken = get_input(board, ship_tuple, taken)
def load_profile(stdscr): """ Save profile to file""" word = get_input(stdscr, "Loading: Profile name:") # Get resulting contents load_profile_from_file(word)
def save_profile(stdscr): """ Save profile to file""" word = get_input(stdscr, "Saving: Profile name:") # Get resulting contents save_profile_to_file(word.strip())
def build(regime: str, epochs: int, batch_size: int, wd: float, learning_rate: float, buffer_size: int) -> list: summaries = [] with tf.name_scope('inputs'): batch, dataset_len = get_input(regime, epochs, batch_size, buffer_size) cues, responses, lens, target = batch global_step = _locate_variable('global_step', [], tf.constant_initializer(0), False, None) with tf.variable_scope('embeddings_matrices', reuse=False): cues_embeddings = _locate_variable( 'cues_embeddings', shape=[CUES_MAP_SIZE, 100], initializer=tf.random_normal_initializer(), trainable=True, wd=wd) responses_embeddings = _locate_variable( 'responses_embeddings', shape=[RESPONSES_MAP_SIZE, 100], initializer=tf.random_normal_initializer(), trainable=True, wd=wd) with tf.name_scope('lookup'): cues_embedded = tf.nn.embedding_lookup(cues_embeddings, cues) summaries.append(tf.summary.histogram('cues_embeddings', cues_embedded)) responses_embedded_raw = tf.nn.embedding_lookup( responses_embeddings, responses) mask = _return_mask(lens) responses_embedded_masked = tf.multiply(mask, responses_embedded_raw) responses_embedded = tf.reduce_sum( responses_embedded_masked, axis=1) / tf.cast( tf.expand_dims(lens, axis=1), dtype=tf.float32) summaries.append( tf.summary.histogram('response_embeddings', responses_embedded)) with tf.name_scope('dense_body'): dense_input = tf.concat((cues_embedded, responses_embedded), axis=1) summaries.append(tf.summary.histogram('dense_input', dense_input)) with tf.variable_scope('first_dense', reuse=False): w1 = _locate_variable( 'w', [200, 1024], tf.contrib.layers.variance_scaling_initializer(), True, wd) b1 = _locate_variable('b', [ 1024, ], tf.random_normal_initializer(), True, wd) z1 = tf.nn.elu(tf.matmul(dense_input, w1) + b1) with tf.variable_scope('second_dense', reuse=False): w2 = _locate_variable( 'w', [1024, 512], tf.contrib.layers.variance_scaling_initializer(), True, wd) b2 = _locate_variable('b', [ 512, ], tf.random_normal_initializer(), True, wd) z2 = tf.nn.elu(tf.matmul(z1, w2) + b2) with tf.variable_scope('third_dense', reuse=False): w3 = _locate_variable( 'w', [512, 256], tf.contrib.layers.variance_scaling_initializer(), True, wd) b3 = _locate_variable('b', [ 256, ], tf.random_normal_initializer(), True, wd) z3 = tf.nn.elu(tf.matmul(z2, w3) + b3) with tf.variable_scope('forth_dense', reuse=False): w4 = _locate_variable( 'w', [256, 128], tf.contrib.layers.variance_scaling_initializer(), True, wd) b4 = _locate_variable('b', [ 128, ], tf.random_normal_initializer(), True, wd) z4 = tf.nn.elu(tf.matmul(z3, w4) + b4) with tf.variable_scope('fivth_dense', reuse=False): w5 = _locate_variable( 'w', [128, 64], tf.contrib.layers.variance_scaling_initializer(), True, wd) b5 = _locate_variable('b', [ 64, ], tf.random_normal_initializer(), True, wd) z5 = tf.nn.elu(tf.matmul(z4, w5) + b5) with tf.variable_scope('sixth_dense', reuse=False): w6 = _locate_variable( 'w', [64, 32], tf.contrib.layers.variance_scaling_initializer(), True, wd) b6 = _locate_variable('b', [ 32, ], tf.random_normal_initializer(), True, wd) z6 = tf.nn.elu(tf.matmul(z5, w6) + b6) with tf.variable_scope('final_dense', reuse=False): w_final = _locate_variable( 'w', [32, 1], tf.contrib.layers.variance_scaling_initializer(), True, wd) b_final = _locate_variable('b', [ 1, ], tf.random_normal_initializer(), True, wd) with tf.variable_scope('skip_connection', reuse=False): w_sc = _locate_variable( 'w', [200, 1], tf.contrib.layers.variance_scaling_initializer(), True, wd) z_sc = tf.matmul(dense_input, w_sc) logits = tf.nn.sigmoid( tf.squeeze(tf.matmul(z6, w_final) + b_final + z_sc), name='sig_logits') summaries.append(tf.summary.histogram('logits', logits)) with tf.name_scope('mae'): mae, metric_update_op = tf.metrics.mean_absolute_error( labels=target, predictions=logits) running_variables = tf.get_collection(tf.GraphKeys.LOCAL_VARIABLES, scope='mae/mean_absolute_error') running_variables_init = tf.variables_initializer( var_list=running_variables) mae_summary = tf.summary.scalar('mae', mae) with tf.name_scope('loss'): loss = _return_loss(target, logits) summaries.append(tf.summary.scalar('loss', loss)) with tf.name_scope('optimization'): with tf.variable_scope('optimizer', reuse=False): optimizer = tf.train.AdamOptimizer(learning_rate) grads_vars = optimizer.compute_gradients(loss) train_step = optimizer.apply_gradients(grads_vars, global_step=global_step) with tf.name_scope('gradients'): for grad, var in grads_vars: if grad is not None: summaries.append( tf.summary.histogram('gradient_at_{}'.format(var.op.name), grad)) with tf.name_scope('variables'): for var in tf.trainable_variables(): summaries.append( tf.summary.histogram('var_at_{}'.format(var.op.name), var)) merge_op = tf.summary.merge(summaries) dense_activations = tf.get_collection(tf.GraphKeys.SUMMARIES, scope='dense_body') input_summaries = tf.get_collection(tf.GraphKeys.SUMMARIES, scope='lookup') test_summaries_op = tf.summary.merge(dense_activations + input_summaries) mae_merge_op = tf.summary.merge([mae_summary]) with tf.name_scope('saving'): saver = tf.train.Saver() return global_step, train_step, merge_op, test_summaries_op, \ saver, dataset_len, mae_merge_op, running_variables_init, \ metric_update_op
mario.move(input , board) if input == 'q' : os.system('clear') sys.exit() time.sleep(0.2) ''' a='r' quit_val = 1 timer = time.time() timer1 = time.time() while a=='r': if config.level == 2 : break p_input = (input.get_input()) if p_input == 'q': quit_val = 0 break # cur_round = datetime.datetime.now() """ if (cur_round - prev_round) >= datetime.timedelta(seconds=1): # bd.update_frame() # prev_round = cur_round""" mario.move(p_input , board) board.render((mario._y - 25)) #board.printer(0,20,0,190) print(mario.get_coods())
def main(): input_string = input.get_input() reversed_string = reverse_string(input_string) print reversed_string print "This string a Palindrome?: %s"%(isPalindrome(reversed_string))
def main(): input.get_input() NumnodeS = cirdraw.draw() prepare.cube_ready(NumnodeS) caculater.caclulater(NumnodeS)
def main(): #file = read_file(file_path) computer_v2 = get_input()
if eat_coins(screen, player): play(coin) count += 1 coin_count -= 1 if killPlayer(screen, player): player = restart(screen, player) health -= 1 if health == 0: break player.draw(screen, dir) mission_comp = checkMissions(mission_comp) make_scene(screen) try: keypress = input.get_input() if keypress == 'd': iter_count += 1 dir = 0 move = checkMove(screen, player) if move != 2 and move != 1: screen.move_right() elif keypress == 'a': dir = 1 move = checkMove(screen, player) if move != 3 and move != 1: screen.move_left() elif keypress == 'w': play(jump) player.jump(screen) make_scene(screen)
h2_150 = np.array(Ne150)[1, :] G_150 = np.add(h1_150, h2_150) ''' def cal_diff(x, y): assert isinstance(x, int) a = table_1.iloc[:, x] b = h1 diff = 0 for i in range(0, len(b)-1): if a.loc[i] == b[i]: diff = diff else: diff += 1 return diff ''' s, h, r, s_ID = input.get_input() s_ID = np.array(s_ID) answer1 = h[:, 2] answer2 = h[:, 3] answer_G = np.add(answer1, answer2) def locus_diff(my_id, his_id): different = [] for i in range(len(my_id)): if int(my_id[i]) != his_id[i]: different.append(i) np.array(different) return different
GLOBAL.enemy_list[j].next() if level == 2: to_del = [] for j in GLOBAL.bullet_list: oldx = GLOBAL.bullet_list[j].x GLOBAL.bullet_list[j].next() # GLOBAL.bullet_list[j].collision() if oldx == GLOBAL.bullet_list[j].x: to_del.append(j) for j in to_del: del GLOBAL.bullet_list[j] a = input.get_input() GLOBAL.board.header["points"] = GLOBAL.points GLOBAL.board.header["health"] = player.health b = int(player.x / config.boardWidth * 100) if level == 1: GLOBAL.board.header[ "progress"] = '\n[' + "\033[31m#\033[39m" * b + "-" * (100 - b) + ']' if level == 2: GLOBAL.board.header["boss health"] = GLOBAL.boss.health if player.x >= config.boardWidth - ( config.dispWidth) / 2 and level != 2: fin_score = GLOBAL.points os.system("tput reset") print("final score: " + str(fin_score))
return lst def randomize(self, lst): off = numpy.random.random() - 0.5 for i in range(0, len(lst)): lst[i] += (numpy.random.random()-0.5)*0.009 + off*0.02 def deconvolute(self, convoluted): matrix = self._a().I return numpy.asarray(matrix * numpy.array(convoluted, ndmin=2).transpose()).transpose()[0] if __name__ == "__main__": original = get_input() sigma = 0.02 disc = Discretizer(sigma, original) convoluted = disc.convolute_with_integral() convoluted2 = disc.convolute_with_matrix() plt.figure() plt.plot(original, "r") plt.plot(convoluted, "b") plt.figure() plt.plot(convoluted, "b") plt.plot(disc.deconvolute(convoluted2), "r") plt.figure() plt.plot(original, "r") plt.plot(convoluted2, "b")
def main(): input_string = input.get_input() pl_string = pig_latin_phrase(input_string) print pl_string
import prepare from input import get_input from AI.SemanticAnalysis import SemanticAnalysis from config import Config config = Config() ai = SemanticAnalysis(config) sentence = get_input(config.INPUT) while sentence: print("客户: " + sentence) ai.get_response(sentence) if ai.is_end(): break sentence = get_input(config.INPUT)
''' This is the entry point for the program, everything will happen through here ''' import fetch import input import plot import simplify data = 0 while data == 0: #Get the input from the user symbol = input.get_input() #Fetch the data from Google Finance if symbol: data = fetch.get_data(symbol) #Simplify the data from Google simplified_Data = simplify.simplify_data(data) #Plot the graph of the stock price over time plot.plot_graph(simplified_Data)
def init(): star_spawner = logic.star_spawner() #Game loop while 1: var.window.setscreencolors('white','black',clear=True) input.get_input() for d in var.debris: if not var.pause or d.owner==var.player: d.tick() d.draw() for b in var.bullets: if not var.pause and var.state=='game': b.tick() b.draw() for s in var.ships: if not var.pause and var.state=='game': s.tick() s.draw() if var.state=='game' and not var.player in var.ships and not var.lives: var.pause = True _count = 0 for d in var.debris: if d.owner==var.player: _count+=1 if not _count: sound.pause_song() var.window.putchars('YOU ARE DEAD',fgcolor=(255,255,255),x=9,y=15) elif var.state=='game' and not var.player in var.ships and var.lives and not var.cleaning: var.cleaning = True sound.pause_song() for d in var.debris: if d.owner==var.player: continue d.move_speed_max = d.move_speed_max/2 d.move_speed = 0 for s in var.ships: s.move_speed_max = 1#s.move_speed_max/2 s.move_speed = 0 s.direction = 'south' s.y_limit = var.win_size[1]+1 elif var.state=='menu': _r = random.randint(-100,0) var.window.putchars('ASCII SHOOTER',fgcolor=(255+_r,255+_r,255+_r),x=9,y=13-(len(var.main_menu)/2)) for entry in var.main_menu: _i = var.main_menu.index(entry) if _i == var.menu_select: var.window.putchars('> '+entry['text'],fgcolor=(255,255,255),x=12,y=15-(len(var.main_menu)/2)+_i) else: var.window.putchars(entry['text'],fgcolor=(255,255,255),x=12,y=15-(len(var.main_menu)/2)+_i) if var.cleaning: var.window.putchars('LIFE -1',fgcolor=(255,255,255),x=12,y=15) if not len(var.ships): var.player = ship.fighter(x=15,y=25,player=True) var.player.move_speed_max = 3 var.lives-=1 sound.unpause_song() var.cleaning = False elif var.pause and var.player in var.ships: var.window.putchars('PAUSED',fgcolor=(255,255,255),x=12,y=15) var.window.putchars('Score %s' % (var.score),fgcolor=(255,255,255),x=0,y=0) var.window.putchars('Lives %s' % (var.lives),fgcolor=(255,255,255),x=23,y=0) if not var.pause and not var.cleaning and var.state=='game': var.ship_spawner.tick() if not var.pause: star_spawner.tick() var.window.update() var.clock.tick(var.fps)