Ejemplo n.º 1
0
    def __call__(self, data: InputData) -> ResultData:
        (x, y) = data.initial
        path = [(x, y)]

        grad = (data.df_dx1(x, y), data.df_dx2(x, y))
        calls_count = 2
        f_calls = 0

        while (grad[0]**2 + grad[1]**2) >= data.eps**2:

            (t_x, t_y) = (x - self.alpha * grad[0], y - self.alpha * grad[1])
            f_calls += 2
            if data.function(t_x, t_y) > data.function(
                    x,
                    y) - self.delta * self.alpha * (grad[0]**2 + grad[1]**2):
                self.alpha *= self.delta
                continue

            (x, y) = (t_x, t_y)
            grad = (data.df_dx1(x, y), data.df_dx2(x, y))
            calls_count += 2
            path.append((x, y))

        return ResultData(self.name, (x, y), data.function(x, y), f_calls,
                          calls_count, path)
Ejemplo n.º 2
0
    def __call__(self, data: InputData) -> ResultData:
        (x, y) = data.initial

        x0 = (x, y)
        x1 = (x + self.length, y)
        x2 = (x, y + self.length)

        xk = [x0, x1, x2]

        f_calls = 3
        path = [x0]
        fk = [data.function(xi[0], xi[1]) for xi in xk]

        while sum([(xk[i][0] - xk[0][0])**2 + (xk[i][1] - xk[0][1])**2
                   for i in range(1, 3)]) / 2 > data.eps**2:

            min_i = min(range(3), key=lambda i: fk[i])
            max_i = max(range(3), key=lambda i: fk[i])

            c_x = 0
            c_y = 0

            for i in range(3):
                if i != max_i:
                    c_x += xk[i][0]
                    c_y += xk[i][1]
            c_x /= 2
            c_y /= 2

            u_k = (2 * c_x - xk[max_i][0], 2 * c_y - xk[max_i][1])
            f_u = data.function(u_k[0], u_k[1])

            if f_u < fk[max_i]:
                xk[max_i] = u_k
                fk[max_i] = f_u
                f_calls += 1
            else:
                for i in range(0, 3):
                    xk[i] = ((xk[i][0] + xk[min_i][0]) / 2,
                             (xk[i][1] + xk[min_i][1]) / 2)
                    fk[i] = data.function(xk[i][0], xk[i][1])
                    f_calls += 2
            path.append(xk[0])

        return ResultData(self.name, xk[0], fk[0], f_calls, 0, path)
Ejemplo n.º 3
0
    def __call__(self, data: InputData) -> ResultData:
        (x, y) = data.initial
        h = self.h

        calls_count = 0
        path = [(x, y)]

        while h > self.delta:
            x1 = x
            y1 = y

            f = data.function(x, y)
            if data.function(x + h, y) < f:
                x1 += h
            if data.function(x - h, y) < f:
                x1 -= h

            if data.function(x, y + h) < f:
                y1 += h
            if data.function(x, y - h) < f:
                y1 -= h

            calls_count += 5

            if (x1, y1) == (x, y):
                h /= 2
                continue

            x += self.lambd * (x1 - x)
            y += self.lambd * (y1 - y)
            path.append((x, y))
        return ResultData(self.name, (x, y), data.function(x, y), calls_count,
                          0, path)
Ejemplo n.º 4
0
    def __call__(self, data: InputData) -> ResultData:
        (x, y) = data.initial
        path = [(x, y)]

        grad = (data.df_dx1(x, y), data.df_dx2(x, y))
        calls_count = 2

        while (grad[0] * grad[0] + grad[1] * grad[1]) >= data.eps * data.eps:
            (x, y) = (x - self.alpha * grad[0], y - self.alpha * grad[1])
            grad = (data.df_dx1(x, y), data.df_dx2(x, y))
            calls_count += 2
            path.append((x, y))

        return ResultData(self.name, (x, y), data.function(x, y), 0,
                          calls_count, path)
Ejemplo n.º 5
0
    def __call__(self, data: InputData) -> ResultData:
        (x, y) = data.initial
        path = [(x, y)]

        dx = data.df_dx1(x, y)
        x1 = x - self.alpha * dx
        dy = data.df_dx2(x1, y)
        y1 = y - self.alpha * dy
        calls_count = 2
        f_calls = 0

        while ((x1 - x)**2 + (y1 - y)**2) >= data.eps**2:
            (x, y) = (x1, y1)
            dx = data.df_dx1(x, y)
            x1 = x - self.alpha * dx
            dy = data.df_dx2(x1, y)
            y1 = y - self.alpha * dy
            calls_count += 2
            path.append((x, y))

        path.append((x1, y1))
        return ResultData(self.name, (x1, y1), data.function(x, y), f_calls,
                          calls_count, path)