Ejemplo n.º 1
0
def evaluate(model, candidates, coefficients, profiles, evaluators, **kwargs):
    if all(map(lambda v : v == 0, coefficients)):
        return Pareto([1000000] + [100000 for _ in profiles])
    else:
        fitness_list = [f(model, coefficients, candidates, profile, **kwargs) for f, profile in zip(evaluators, profiles)]
        coefficient_sum = sum(coefficients)
        return Pareto([coefficient_sum] + fitness_list)
Ejemplo n.º 2
0
 def __init__(self, pareto, args):
     """ edit this function to change the way that multiple objectives
     are combined into a single objective
     
     """
     
     Pareto.__init__(self, pareto.values)
     if "fitness_weights" in args :
         weights = asarray(args["fitness_weights"])
     else : 
         weights = asarray([1 for _ in pareto.values])
         
     self.fitness = sum(asarray(pareto.values) * weights)
Ejemplo n.º 3
0
def myevaluator(candidates, args):
    fitness = []
    for i, cc in enumerate(candidates):
        rr = evaluate(cc, i)
        fitness.append(Pareto(rr))
        update_graph()
        print(rr, ": ", cc)
    return fitness
Ejemplo n.º 4
0
    def evaluator(self, candidates, args):
        fitness = []
        self.generation += 1
        for c in candidates:
            #print("c: ", c, "\n conversion: ", utils.vector_to_matrix(c, self.n_turbines, self.n_cities))
            c_power = fit.wind_turbine_power_fitness(
                np.array(
                    utils.vector_to_matrix(c, self.n_turbines, self.n_cities)),
                self.matrix_power)

            c_cost, cities_with = fit.wind_turbine_cost_fitness(
                np.array(
                    utils.vector_to_matrix(c, self.n_turbines, self.n_cities)),
                self.wind_turbines_costs)

            #print(c_cost, cities_with)

            power_plant = fit.PowerPlant(
                utils.vector_to_matrix(c, self.n_turbines, self.n_cities),
                self.matrix_cities.tolist(), 10).run()
            '''
            the cost of building transmission line for electrcity is 2.24 mil. Dollars per km
            Transporting actualy electrcity costs 3.61 dollars per km per kW. 
            '''
            c_cost_power_plant = power_plant.fitness * (3.61 * 10**(-6)) * (
                c_power * 10**(6))  # 0.02 -> 2 $ per km
            #c_cost_power_plant = power_plant.fitness * 0.01 # 0.02 -> 2 $ per km

            total_cost = (c_cost + c_cost_power_plant)

            # 0: lat, 1: long
            #print("lat,lon")
            for i in range(self.n_powerplants):
                #print(power_plant.candidate[0+i*2],",",power_plant.candidate[1+i*2])
                if self.best_fitness_power <= c_power and [
                        c_power, total_cost
                ] >= self.best_fitness:
                    self.best_fitness = [c_power, total_cost]
                    self.best_fitness_power = c_power
                    self.powerplants.append([
                        power_plant.candidate[0 + i * 2],
                        power_plant.candidate[1 + i * 2]
                    ])
            '''
            penalty
            if (self.budget - total_cost) < 0:
                c_power = 0

            '''

            fitness.append(Pareto([c_power, total_cost], [True, False]))

        print("GENERATION: [", self.generation,
              "] | fitness of 3 individuals (not sorted): ", fitness[:3])
        return fitness
Ejemplo n.º 5
0
    def evaluate(self, solution):
        """Evaluates a single solution

            :param solution: The individual to be evaluated.
            :returns: A list with a fitness value or a Pareto object.

        """
        p = self.problem.evaluate_solution(solution)
        # single objective
        if self.problem.number_of_objectives == 1:
            return p[0]
        # multi objective
        else:
            return Pareto(p)
Ejemplo n.º 6
0
def myevaluator(candidates, args):
    fitness = []
    for cc in candidates:
        f1 = sum([
            -10 * math.exp(-0.2 * math.sqrt(cc[i]**2 + cc[i + 1]**2))
            for i in range(len(cc) - 1)
        ])
        f2 = sum([math.pow(abs(x), 0.8) + 5 * math.sin(x)**3 for x in cc])
        pp = Pareto([
            f1, f2
        ])  # Pareto is the special data type provided by inspyred libarary
        fitness.append(pp)  # append it to the list called fitness
    return (
        fitness
    )  # return fitness which is the  set fitness values for all candidates.
Ejemplo n.º 7
0
def myevaluator(candidates, args):
    """given a set of candidates calculate objective 1 and 2 (if 2 objectives, more if you have more objectives). 
    These are teh fitness values. Put each pair in Pareto object provided by inspyred. 
    Return as a list (same order as candidates! )
    """
    fitness = []
    for cc in candidates:
        f1 = sum([
            -10 * math.exp(-0.2 * math.sqrt(cc[i]**2 + cc[i + 1]**2))
            for i in range(len(cc) - 1)
        ])
        f2 = sum([math.pow(abs(x), 0.8) + 5 * math.sin(x)**3 for x in cc])
        pp = Pareto([
            f1, f2
        ])  # Pareto is the special data type provided by inspyred libarary
        fitness.append(pp)  # append it to the list called fitness
    return (
        fitness
    )  # return fitness which is the  set fitness values for all candidates.
Ejemplo n.º 8
0
 def __call__(self, model, solution, targets):
     return Pareto(
         values=[o(model, solution, targets) for o in self.objectives])
Ejemplo n.º 9
0
 def worst_fitness(self, maximize=True):
     return Pareto(
         values=[o.worst_fitness(maximize) for o in self.objectives],
         maximize=maximize)