Ejemplo n.º 1
0
class DeepFeatureRep(interface):
    r'''
  mean_F: \mathbb{R}^{N x H x W x 3} \to \mathbb{R}^{D}
  F_inverse: \mathbb{R}^{D} \to \mathbb{R}^{H x W x 3}

  mean_F achieves O(1) space wrt N if X is an iterator that yields
  \mathbb{R}^{H x W x 3}.
  '''
    mean_F = method(['self', 'X'])
    F_inverse = method(['self', 'F', 'initial_image'], keywords='options')
Ejemplo n.º 2
0
class AttributeClassifier(interface):
    r'''
  lookup_scores: returns precomputed scores given a list of strings
  score: \mathbb{R}^{N x H x W x 3} \to \mathbb{R}^{N x K}
  fields: list of K strings
  select: constraints is a list of 2-tuples (field index, value),
    attributes is \mathbb{R}^{K}. Returns a list of image file paths which
    satisfy the given constraints and are sorted by minkowski distance
    (over some set of fields) to the given attribute vector.

  score also accepts a list of N strings.
  '''
    lookup_scores = method(['self', 'X'], keywords='options')
    score = method(['self', 'X'], keywords='options')
    fields = method(['self'])
    select = method(['self', 'constraints', 'attributes'], keywords='options')
Ejemplo n.º 3
0
class comestible(interface):
    eat = method(['self'])
    buy_from = method(['self', 'supermarket'])
    mix_with = method(['self'], varargs='ingredients')
    cook_with = method(['self'], keywords='ingredients')
    cook = method(['self', 'temperature'], defaults=1)