Ejemplo n.º 1
0
def parse_acacia_and_build_expr(ltl_text:str, part_text:str,
                                ltl_to_atm:LTLToAutomaton,
                                strengthen_lvl) -> Spec:
    """ Note: parses and strengthens the formula. """

    input_signals, output_signals, data_by_unit = acacia_parser.parse(ltl_text, part_text)

    assert data_by_unit is not None

    ltl_properties = []
    for (unit_name, unit_data) in data_by_unit.items():
        assumptions = unit_data[0]
        guarantees = unit_data[1]

        a_safeties, a_livenesses = split_safety_liveness(assumptions, ltl_to_atm)
        g_safeties, g_livenesses = split_safety_liveness(guarantees, ltl_to_atm)

        if strengthen_lvl == 2:
            ltl_property = strengthen2([], [],
                                       a_safeties, g_safeties,
                                       a_livenesses, g_livenesses)
        elif strengthen_lvl == 1:
            ltl_property = strengthen1([], [],
                                       a_safeties, g_safeties,
                                       a_livenesses, g_livenesses)
        else:
            ltl_property = and_expr(list(a_safeties) + list(a_livenesses))\
                           >> and_expr(list(g_safeties) + list(g_livenesses))
        ltl_properties.append(ltl_property)

    return Spec(input_signals, output_signals, and_expr(ltl_properties))
Ejemplo n.º 2
0
def check_unreal(ltl_text: str, part_text: str, is_moore: bool,
                 ltl_to_atm: LTLToAutomaton, min_k, max_k,
                 opt_level: int) -> str or None:
    spec = parse_acacia_and_build_expr(ltl_text, part_text, ltl_to_atm,
                                       opt_level)
    assert BAD_OUT_NAME not in (spec.inputs | spec.outputs), 'name collision'
    neg_spec = Spec(spec.outputs, spec.inputs, ~spec.formula)
    neg_is_moore = not is_moore
    return _check_real(neg_spec, neg_is_moore, ltl_to_atm, min_k, max_k)
Ejemplo n.º 3
0
def check_real(spec: Spec, min_size, max_size, ltl_to_atm: LTLToAutomaton,
               solver_factory: Z3SolverFactory,
               use_direct_encoding: bool) -> LTS or None:
    shared_aht, dstFormPropMgr = SharedAHT(), DstFormulaPropMgr()

    # normalize formula (negations appear only in front of basic propositions)
    spec.formula = NNFNormalizer().dispatch(spec.formula)
    logging.info("CTL* formula size: %i", expr_size(spec.formula))

    if use_direct_encoding:
        top_formula, atm_by_p, UCWs = automize_ctl(spec.formula, ltl_to_atm)
        logging.info("Total number of states in sub-automata: %i",
                     sum([len(a.nodes) for a in atm_by_p.values()]))
        for p, atm in atm_by_p.items():
            logging.debug(str(p) + ', atm: \n' + automaton_to_dot.to_dot(atm))
        encoder = CTLEncoderDirect(
            top_formula, atm_by_p, UCWs, build_tau_desc(spec.inputs),
            spec.inputs,
            dict((o, build_output_desc(o, True, spec.inputs))
                 for o in spec.outputs), range(max_size))
    else:
        aht_automaton = ctl2aht.ctl2aht(spec, ltl_to_atm, shared_aht,
                                        dstFormPropMgr)

        aht_nodes, aht_transitions = get_reachable_from(
            aht_automaton.init_node, shared_aht.transitions, dstFormPropMgr)
        logging.info('The AHT automaton size (nodes/transitions) is: %i/%i' %
                     (len(aht_nodes), len(aht_transitions)))
        if not aht_transitions:
            logging.info('AHT is empty => the spec is unrealizable!')
            return None

        if logging.getLogger().isEnabledFor(
                logging.DEBUG):  # aht2dot takes long time
            logging.debug('AHT automaton (dot) is...\n')
            logging.debug(
                aht2dot.convert(aht_automaton, shared_aht, dstFormPropMgr))

        encoder = CTLEncoderViaAHT(
            aht_automaton, aht_transitions, dstFormPropMgr,
            build_tau_desc(spec.inputs), spec.inputs,
            dict((o, build_output_desc(o, True, spec.inputs))
                 for o in spec.outputs), range(max_size))

    model = model_searcher.search(min_size, max_size, encoder,
                                  solver_factory.create())
    return model
Ejemplo n.º 4
0
    def test_ctl2aht(self):
        """ 'Crash' test: no assertions fails """
        rs, r = sig_prop('r')
        cs, c = sig_prop('c')
        gs, g = sig_prop('g')

        formulas = [
            AG(r >> F(g)),
            AG(r >> F(g)) & EGF(~g),
            AG(r >> F(g)) & EFG(g) & AFEG(~g),
            AG(r >> X(g & X(g & EGF(g) & EGF(~g)))),
            # AG(r >> F(g | c) & EGF(g) & EF(c) & EF(~c) & EGF(r)),   # TODO: why those tests are so slow?
            AG(EFG(r & g)),
            # AG(EFG(r & g)) | AFEG(g),
            AG(~r >> F(~g)) & AG(~r >> F(~g)) & EFG(g) & AFEG(~g),
            A(r),
            A(r) & A(~r),
            g,
            Bool(False),
            Bool(True)
        ]

        i = 0
        for f in formulas:
            i += 1
            print('checking: ' + str(f))

            dstFormPropMgr = DstFormulaPropMgr()
            shared_aht = SharedAHT()
            spec = Spec([rs, cs], [gs], f)
            ctl2aht(spec, self.ltl2ba, shared_aht, dstFormPropMgr)

            with tempfile.NamedTemporaryFile(delete=False) as dot_file:
                dot = aht2dot.convert(None, shared_aht, dstFormPropMgr)
                dot_file.write(dot.encode())
                # with open('/tmp/ttmmpp%i.dot'%i, 'w') as output:
                #     output.write(dot)

            os.remove(dot_file.name)
Ejemplo n.º 5
0
#              EF(o1&o2))

# spec3:
# diff: it has AGEF instead of E(GF..GF..)
# formula = AG((i1&i2) >> F(o1 & o2)) & \
#           AG((i1&i2&o1&o2) >> X(o1&o2)) & \
#           AG(EF(o1&~o2) & \
#              EF(~o1&o2) & \
#              EF(~o1&~o2) & \
#              EF(o1&o2))

# spec2:
# it says that a single path should raise all combinations of o1 o2
# (rather than allowing different paths to do so)
# formula = AG((i1&i2) >> F(o1 & o2)) & \
#           AG((i1&i2&o1&o2) >> X(o1&o2)) & \
#           E(GF(o1&~o2) & \
#             GF(~o1&o2) & \
#             GF(~o1&~o2) & \
#             GF(o1&o2))

# spec1 (it has model 1)
# formula = AG((i1&i2) >> F(o1 & o2)) & \
#           AG((i1&i2&o1&o2) >> X(o1&o2)) & \
#           EGF(o1&~o2) & \
#           EGF(~o1&o2) & \
#           EGF(~o1&~o2) & \
#           EGF(o1&o2)

spec = Spec(inputs, outputs, formula)
Ejemplo n.º 6
0
def convert(spec: Spec, nof_IDs: int or None,
            ltl_to_atm: LTLToAutomaton) -> Spec:
    # (E.g. EG¬g ∧ AGEF¬g ∧ EFg)
    # The algorithm is:
    #   collect all E-subformulas
    #   for each unique E-subformula:
    #     introduce new v-variable if not yet introduced
    #   if nof_IDs is not given:
    #     nof_IDs = the number of states in all existential automata
    #     # nof_IDs defines the range of every v-variable
    #   introduce nof_IDs d-variables (each is a valuation of all inputs)
    #   for each unique A-subformula:
    #     introduce p-variable
    #   for each unique A-subformula:
    #     create an LTL formula         (0)
    #   for each unique E-subformula:
    #     create an LTL formula         (1)
    #   create the top-level formula    (2)
    #   create the conjunction (0) & (1) & (2)
    #   //(nope, we don't do this) inline back A-subformulas (replace their p by the path formulas (without 'A'))
    #   replace existential propositions by 'v != 0'
    #   return the result

    spec = Spec(spec.inputs, spec.outputs,
                NNFNormalizer().dispatch(spec.formula))

    atomizer = CTLAtomizerVisitor('__p')
    top_formula = atomizer.dispatch(spec.formula)

    exist_props = [p for (p, f) in atomizer.f_by_p.items() if f.name == 'E']

    if nof_IDs is None:
        atm_by_exist_p = dict(
            (p,
             ltl_to_atm.convert(atomizer.f_by_p[p].arg, '__q_' + p.arg1.name))
            for p in exist_props)
        nof_IDs = sum(len(atm.nodes) for atm in atm_by_exist_p.values())

    logging.info("k = %i", nof_IDs)

    v_bits_by_exist_p = dict((
        p,
        tuple(
            reversed([
                Signal('__v%s_%i' % (p.arg1.name.replace('_', ''), i))
                for i in range(ceil(log(nof_IDs + 1, 2)) or 1)
            ]))  # NB: +1 to account for 0
    ) for p in exist_props)  # type: Dict[BinOp, SignalsTuple]
    ordered_inputs = tuple(spec.inputs)  # type: SignalsTuple
    dTuple_by_id = dict(
        (j, tuple(Signal('__d%i_%s' % (j, i)) for i in ordered_inputs))
        for j in range(1, nof_IDs + 1))  # type: Dict[int, SignalsTuple]

    univ_props_to_inline = set(atomizer.f_by_p.keys()) - \
                           _calc_nested_props(atomizer.f_by_p) - \
                           set(exist_props)

    ltl_formula = top_formula
    # such props can only be mentioned in the top_formula
    ltl_formula = _inline_univ_p(
        ltl_formula, dict(
            (p, atomizer.f_by_p[p]) for p in univ_props_to_inline))
    ltl_formula &= _conjunction(
        _create_LTL_for_A_formula(p, atomizer.f_by_p[p].arg)
        for p in set(atomizer.f_by_p) - set(exist_props) -
        univ_props_to_inline)
    ltl_formula &= _conjunction(
        _create_LTL_for_E_formula(v_bits_by_exist_p[p], atomizer.f_by_p[p].arg,
                                  dTuple_by_id, ordered_inputs)
        for p in exist_props)

    ltl_formula = _replace_exist_propositions(ltl_formula, v_bits_by_exist_p,
                                              nof_IDs)

    logging.debug("exist propositions: \n%s",
                  pformat([ep.arg1 for ep in v_bits_by_exist_p]))

    new_outputs = list(chain(*v_bits_by_exist_p.values())) + \
                  list(chain(*dTuple_by_id.values())) + \
                  list(p.arg1 for p in set(atomizer.f_by_p) - set(exist_props) - univ_props_to_inline)

    spec = Spec(spec.inputs, set(new_outputs) | spec.outputs, ltl_formula)
    return spec