Ejemplo n.º 1
0
    def render(self):
        #print("Avant de descendre dans le decorateur etc")
        geo_file,legend_file = self.get_step(variable= self.variable)
        #print("On en revient ici")
        geojson_layer = ipyl.GeoJSON(data=geo_file,hover_style={"opacity":1},name="AROME")
        if hasattr(self,"geojson_layer"):
            if self.geojson_layer in self.m.layers:
                self.m.substitute_layer(self.geojson_layer,geojson_layer)
            else: 
                #print("par ici?")
                self.m.add_layer(geojson_layer)
        else:
            self.m.add_layer(geojson_layer)
        self.geojson_layer = geojson_layer
        self.geojson_layer.on_hover(self.update_html)
        legend_file.seek(0)
        self.legend.value =legend_file.read()
    
    
        chor_layer = ipyl.Choropleth(geo_data=self.region_geo,
                                    choro_data=self.da_aggregated.isel(step=self.step).to_pandas().to_dict(),
                                    name="zonage sur temps sensible (WME)",
                                    value_min = self.vmin,
                                    value_max = self.vmax,
                                    colormap=linear.RdBu_03)      
            
        if hasattr(self,"chor_layer"):
            if self.chor_layer in self.m.layers:
                #print("on passe la")
                self.m.substitute_layer(self.chor_layer,chor_layer)
            else: 
                #print("ici")
                self.m.add_layer(chor_layer)
        else:
            #print('ou la')
            self.m.add_layer(chor_layer)
        self.chor_layer = chor_layer
        self.chor_layer.on_hover(self.update_chor_html)

        chor_layer2 = ipyl.Choropleth(geo_data=self.region_geo2,
                                    choro_data=self.toto,
                                    name="zonage sur homogeneous temps sensible criterion ("+self.distance_choice+")",
                                    value_min = self.vmin,
                                    value_max = self.vmax,
                                    colormap=linear.RdBu_07)
        
        if hasattr(self,"chor_layer2"):
            if self.chor_layer2 in self.m.layers:
                #print("et par la")
                self.m.substitute_layer(self.chor_layer2,chor_layer2)
            else: 
                #print('et ici')
                self.m.add_layer(chor_layer2)
        else:
            #print('et ou la')
            self.m.add_layer(chor_layer2)
        self.chor_layer2 = chor_layer2
        self.chor_layer2.on_hover(self.update_chor_html2)
Ejemplo n.º 2
0
    def update_homo_area(self):
        # On change les donnes de Gab 
        if self.distance_choice in ["compas","compas_asym"]:
            variable = "WME"
        else: 
            variable = "W1"
        (code,hexc,_) = geo_gv.get_cmap_info(variable)
        cmap = cm.StepColormap(hexc.values,index=np.asarray(code).astype(float),vmin=code[0],vmax=code[-1]+1)
        chor_layer2 = ipyl.Choropleth(geo_data=self.region_geo2,
                                    choro_data=self.homo_zone,
                                    name="zonage sur homogeneous temps sensible criterion ("+self.distance_choice+")",
                                    value_min = float(code[0]),
                                    value_max = float(code[-1]+1),
                                    colormap = cmap, 
                                    border_color="red",
                                    style={'fillOpacity': 0.8, 'dashArray': '5, 5',"opacity":0.5},
                                    hover_style={"opacity":1,"color":"black","weight":4})

        chor_layer2.value_min = float(code[0])
        chor_layer2.value_max = code[-1]*1.0
        if hasattr(self,"chor_layer2"):
            if self.chor_layer2 in self.m.layers:
                #print("et par la")
                self.m.substitute_layer(self.chor_layer2,chor_layer2)
            else: 
                #print('et ici')
                self.m.add_layer(chor_layer2)
        else:
            #print('et ou la')
            self.m.add_layer(chor_layer2)
        self.chor_layer2 = chor_layer2
        self.chor_layer2.on_hover(self.update_chor_html2)
Ejemplo n.º 3
0
    def create_choropleth_layer(self, key):
        """add choropleth layer to map.

        Args:
            key (str): A selected value from tablemap's layer selection drop down menu.

        """

        # vmax_val = max(self.bldg_data_df[key])
        vmax_val = 1
        temp_id = list(range(len(self.inventory_df['guid'])))
        temp_id = [str(i) for i in temp_id]
        choro_data = dict(zip(temp_id, self.inventory_df[key]))
        try:
            self.map.remove_layer(self.layer)
            print("removed previous layer")
        except Exception:
            print("there is no existing layer")
            pass
        self.layer = ipylft.Choropleth(geo_data=self.inventory_json,
                                       choro_data=choro_data,
                                       colormap=linear.YlOrRd_04,
                                       value_min=0,
                                       value_max=vmax_val,
                                       border_color='black',
                                       style={'fillOpacity': 0.8},
                                       name='dataset map')

        self.map.add_layer(self.layer)

        print('Done loading layer.')
Ejemplo n.º 4
0
def build_us_cntymap(dataframe, colname):
    global geojson_cnty, this_cnty_colname, cnty_overlay, county_data_dict
    global cnty_layer, cnty_legend, cnty_control
    global MapsVDict, geojson_cnty, mapcenter, mapzoom, loc_dict

    # This function builds a US Choropleth Map (but doesn't display it) for the county-level
    # data provided.

    # Load data needed to build either kind of map
    build_us_genericmap()

    # Build location dictionary if doesn't yet exist
    try:
        loc_dict
    except NameError:
        loc_dict = BuildLocationDict(dataframe)

    # ipyleaflet requires a dictionary for the choro_data field/the variable to be visualized,
    # so convert the Pandas data series into the appropriate dictionary setting keys to postal
    # codes used in geojson_states
    county_data_dict = get_cnty_dict(dataframe, colname)

    # Determine range of values for colormap, then define colormap (need to also pass
    # max/min values to Choropleth builder or they are ignored). Set up legend dictionary
    # to show this range.
    (minval, maxval) = set_cm_limits(county_data_dict)
    cmap = BuildColormap(minval, maxval)
    legendDict = BuildLegendDict(minval, maxval, cmap)

    # Creating the map
    cnty_map = lf.Map(center=mapcenter, zoom=mapzoom)

    # Draw a functional counties layer
    cnty_layer = lf.Choropleth(
        geo_data=geojson_cnty,
        choro_data=scrub(county_data_dict),
        key_on='id',
        # Below here is some formatting/coloring from the documentation
        colormap=cmap,
        value_min=minval,
        value_max=maxval,
        border_color=map_border_color,
        hover_style=map_hover_style,
        style=map_style)
    cnty_map.add_layer(cnty_layer)

    # Display a legend
    cnty_legend = lf.LegendControl(legendDict,
                                   name="Legend",
                                   position="bottomleft")
    cnty_map.add_control(cnty_legend)

    # Display data in overlay
    this_cnty_colname = colname
    cnty_overlay = widgets.HTML("Hover over Location for Details")
    cnty_control = lf.WidgetControl(widget=cnty_overlay, position='topright')
    cnty_map.add_control(cnty_control)
    cnty_layer.on_hover(update_cnty_overlay)

    return (cnty_map, cnty_legend, cnty_overlay)
Ejemplo n.º 5
0
 def create_choropleth_layer(self, key):
     # vmax_val = max(self.bldg_data_df[key])
     vmax_val = 1
     temp_id = list(range(len(self.bldg_data_df['guid'])))
     temp_id = [str(i) for i in temp_id]
     choro_data = dict(zip(temp_id, self.bldg_data_df[key]))
     layer = ipylft.Choropleth(geo_data=self.bldg_data_json,
                               choro_data=choro_data,
                               colormap=linear.YlOrRd_04,
                               value_min=0,
                               value_max=vmax_val,
                               border_color='black',
                               style={'fillOpacity': 0.8},
                               name='Tax-Lots')
     self.m.add_layer(layer)
     # self.m
     print('done')
Ejemplo n.º 6
0
def update_us_cntymap(dataframe, colname, thismap, thislegend, thisoverlay):
    global geojson_cnty, this_cnty_colname, county_data_dict, cnty_overlay, loc_dict

    # This function updates an existing US County-level Choropleth map

    # Build location dictionary if doesn't yet exist
    try:
        loc_dict
    except NameError:
        loc_dict = BuildLocationDict(dataframe)

    # Load the new data and determine the new colormap limits
    county_data_dict = get_cnty_dict(dataframe, colname)
    (minval, maxval) = set_cm_limits(county_data_dict)
    cmap = BuildColormap(minval, maxval)
    legendDict = BuildLegendDict(minval, maxval, cmap)

    # Assign updated legend dictionary
    thislegend.legends = legendDict

    # Draw a functional counties layer
    cnty_layer_update = lf.Choropleth(
        geo_data=geojson_cnty,
        choro_data=scrub(county_data_dict),
        key_on='id',
        # Below here is some formatting/coloring from the documentation
        colormap=cmap,
        value_min=minval,
        value_max=maxval,
        border_color=map_border_color,
        hover_style=map_hover_style,
        style=map_style)

    # Replace existing Choropleth layer (which is always the second layer with new layer
    cnty_layer = thismap.layers[1]
    thismap.substitute_layer(cnty_layer, cnty_layer_update)
    cnty_layer = cnty_layer_update

    # Update column name used by state overlay to look up values
    this_cnty_colname = colname
    thisoverlay.value = "Hover over Location for Details"
    cnty_overlay = thisoverlay
    cnty_layer_update.on_hover(update_cnty_overlay)

    return
Ejemplo n.º 7
0
    def render(self):
        # On ajoute le choropleth
        chor_layer = ipyl.Choropleth(geo_data=self.region_geo,
                                    choro_data=self.da_aggregated.isel(step=self.step).to_pandas().to_dict(),
                                    name="regional_mean",
                                    value_min = self.vmin,
                                    value_max = self.vmax,
                                    colormap=linear.RdBu_03)

        if hasattr(self,"chor_layer"):
            if self.chor_layer in self.m.layers:
                self.m.substitute_layer(self.chor_layer,chor_layer)
            else: 
                self.m.add_layer(chor_layer)
        else:
            self.m.add_layer(chor_layer)
        self.chor_layer = chor_layer
        self.chor_layer.on_hover(self.update_chor_html)
        # On ajoute l'interactivité sur click
        self.chor_layer.on_click(self.hist_html)
Ejemplo n.º 8
0
def update_us_statesmap(dataframe, colname, thismap, thislegend, thisoverlay):
    global geojson_states, this_state_colname, state_data_dict, state_overlay

    # This function updates an existing US State-level Choropleth map

    # Load the new data and determine the new colormap limits and set up legend dictionary
    # to show this range.
    state_data_dict = get_state_dict(dataframe, colname)
    (minval, maxval) = set_cm_limits(state_data_dict)
    cmap = BuildColormap(minval, maxval)
    legendDict = BuildLegendDict(minval, maxval, cmap)

    # Assign updated legend dictionary
    thislegend.legends = legendDict

    # Draw a functional states layer
    state_layer_update = lf.Choropleth(
        geo_data=geojson_states,
        choro_data=scrub(state_data_dict),
        key_on='id',
        # Below here is some formatting/coloring from the documentation
        colormap=cmap,
        value_min=minval,
        value_max=maxval,
        border_color=map_border_color,
        hover_style=map_hover_style,
        style=map_style)

    # Replace existing Choropleth layer (which is always the second layer with new layer
    state_layer = thismap.layers[1]
    thismap.substitute_layer(state_layer, state_layer_update)

    # Update column name used by state overlay to look up values
    this_state_colname = colname
    thisoverlay.value = "Hover over States for Details"
    state_overlay = thisoverlay
    state_layer_update.on_hover(update_state_overlay)

    return
Ejemplo n.º 9
0
 def update_HSS_area(self):
     # On change les donnees de Mary 
     if hasattr(self,"dfres"):
         # On choisit (par defaut) le code WME a afficher pour Mary 
         if self.distance_choice in ["compas","compas_asym"]:
             variable = "WME"
         else: 
             variable = "W1"
         (code,hexc,_) = geo_gv.get_cmap_info(variable)
         cmap = cm.StepColormap(hexc.values,index=np.asarray(code).astype(float),vmin=code[0],vmax=code[-1]+1)
         chor_layer = ipyl.Choropleth(
                                 geo_data=self.region_geo,
                                 choro_data=self.mary_zone.to_dict(),
                                 name="zonage sur temps sensible (WME)",
                                 value_min = float(code[0]),
                                 value_max = float(code[-1]+1),
                                 colormap = cmap, 
                                 border_color='blue',
                                 style={'fillOpacity': 0.8, 'dashArray': '5, 5'},
                                 hover_style={"opacity":1,"color":"black","weight":4})      
         chor_layer.value_min = float(code[0])
         chor_layer.value_max = code[-1]*1.0
         if hasattr(self,"chor_layer"):
             if self.chor_layer in self.m.layers:
             #print("on passe la")
                 self.m.substitute_layer(self.chor_layer,chor_layer)
             else: 
                 #print("ici")
                 self.m.add_layer(chor_layer)
         else:
             #print('ou la')
             self.m.add_layer(chor_layer)
         self.chor_layer = chor_layer
         self.chor_layer.on_hover(self.update_chor_html)
     else: 
         if hasattr(self,"chor_layer") and self.chor_layer in self.m.layers:
             self.m.remove_layer(self.chor_layer)
Ejemplo n.º 10
0
def plotLeaflet(geoJson: dict,
                idToValue: dict,
                worldMap: lf.Map = None,
                includeEmpty: bool = True,
                labelFormat: str = "Id={0} - Value={1}",
                mapArgs: dict = {},
                heatmapArgs: dict = {}) -> lf.Map:
    ''' Plot the choropleth on the map using the ipyleaflet library
      @idToValue: a dictionary containing mappings of ids to their associated values
      @worldMap: ipyleaflet Map object. If this is specified, the new heatmap will be addded
                 to this object. Else a new Map object will be created
      @includeEmpty: true if we want to display the regions that have value 0. False otherwise
      @labelFormat: the string format of the text that is displayed when the mouse hovers over a polygon.
                    The format must contain exactly 2 placeholders.
      Returns: map object
  '''
    updatedIdToValue = __syncIdToValueDict(geoJson, idToValue)

    # If we don't display empty regions, we need to
    # create a new geo JSON that does NOT contain the
    # ids that have 0 value
    if (not includeEmpty):
        origGeoJson = geoJson
        geoJson = {"type": "FeatureCollection", "features": []}

        for idValue, value in updatedIdToValue.items():
            if (value > 0):
                feature = getFeatureById(origGeoJson, idValue)
                geoJson["features"].append(feature)

    # Create the world map object if not specified
    if (worldMap is None):
        #basemap=lf.basemaps.CartoDB.DarkMatter, center=center, zoom=10
        worldMap = lf.Map(**mapArgs)
        worldMap.add_control(lf.FullScreenControl())
        worldMap.add_control(lf.LayersControl(position="topright"))

    # Default heatmap arguments
    minVal, maxVal = min(updatedIdToValue.values()), max(
        updatedIdToValue.values())
    defaultHeatmapArgs = {
        "key_on": "id",
        "border_color": "black",
        "value_min": minVal,
        "value_max": maxVal,
        "style": {
            'fillOpacity': 0.8,
            'dashArray': '5, 5'
        },
        "hover_style": {
            'fillColor': 'purple',
            'dashArray': '0',
            'fillOpacity': 0.5
        },
        "name": "Choropleth",
        "colormap": linear.OrRd_06
    }

    # Make a copy of the heatmapArgs, because we would add the default arguments
    # to this dict if the default arguments are not specified by the caller. Making
    # a copy prevents modifying the passed in dict object
    heatmapArgs = dict(heatmapArgs)
    for k, v in defaultHeatmapArgs.items():
        if (k not in heatmapArgs):
            heatmapArgs[k] = v

    # Create the choropleth layer
    choroplethLayer = lf.Choropleth(geo_data=geoJson,
                                    choro_data=updatedIdToValue,
                                    **heatmapArgs)

    # Create a label widget to display the currently hovered polygon id &
    # the value associated with that id
    labelWidget = widgets.Label(value="")
    widgetControl = lf.WidgetControl(widget=labelWidget,
                                     position="bottomright")
    worldMap.add_control(widgetControl)

    def mouseout(*args, **kwargs):
        ''' Set the label value to empty string when the mouse exits a region '''
        labelWidget.value = ""

    def hover(*args, **kwargs):
        ''' Set the label to the id & its associated value '''
        idValue = kwargs["id"]
        labelWidget.value = labelFormat.format(idValue,
                                               updatedIdToValue[idValue])

    # Register callbacks
    choroplethLayer.on_mouseout(mouseout)
    choroplethLayer.on_hover(hover)

    # Remove existing choropleth layer that has the same name
    choroplethName = heatmapArgs["name"] if ("name" in heatmapArgs) else ""
    removeLayerByType(worldMap, choroplethName, lf.Choropleth)

    worldMap.add_layer(choroplethLayer)
    return worldMap
Ejemplo n.º 11
0
def brlmap(data,
           pattern="cod",
           title="",
           colormap=linear.YlOrBr_04,
           legendPosition="bottomright",
           style={
               'fillOpacity': 1,
               'dashArray': '5, 5'
           }):
    geo_json_data = __finddictcities(data.keys(), pattern)
    key_max = max(data.keys(), key=(lambda k: data[k]))
    key_min = min(data.keys(), key=(lambda k: data[k]))
    centerX = (geo_json_data["bounds"][0] + geo_json_data["bounds"][2]) / 2
    centerY = (geo_json_data["bounds"][1] + geo_json_data["bounds"][3]) / 2
    escala = {
        1: 360,
        2: 180,
        3: 90,
        4: 45,
        5: 22.5,
        6: 11.25,
        7: 5.625,
        8: 2.8125,
        9: 1.40625,
        10: 0.703125,
        11: 0.3515625,
        12: 0.17578125,
        13: 0.087890625,
        14: 0.0439453125,
        15: 0.02197265625,
        16: 0.010986328125,
        17: 0.0054931640625
    }
    difX = abs(geo_json_data["bounds"][2] - geo_json_data["bounds"][0])
    difY = abs(geo_json_data["bounds"][3] - geo_json_data["bounds"][1])
    if (difY > difX):
        maiordif = difY * 1.5
    else:
        maiordif = difX
    ind = 17
    while (escala[ind] < maiordif):
        ind -= 1
    m = ipyleaflet.Map(center=(centerY, centerX), zoom=ind)

    global __data
    __data = data
    layer = ipyleaflet.Choropleth(geo_data=geo_json_data,
                                  choro_data=data,
                                  colormap=colormap,
                                  border_color='black',
                                  style=style)
    legend = colormap.scale(data[key_min], data[key_max])
    out = widgets.Output()
    with out:
        display(legend)

    m.add_layer(layer)
    stylesheets = HTML('''
        <style>
        .rigthlgd svg{
            float: right;
        }
        
        .rigthlgd{
            float: right;
            text-align: right;
        }
        .hiddenTitle
        {
           display: none;
        }
        </style>
    ''')
    elemTitle = HTML('''
        <h3 style="text-align: center;">''' + title + '''</h3>
    ''')
    if (title == ""):
        elemTitle.add_class("hiddenTitle")

    global labelDados
    labelDados = HTML('<h4><h4>')

    labelDados.layout.padding = '2px'
    labelDados.layout.width = '47%'

    box_legenda = Layout(display='flex',
                         flex_flow='row',
                         align_items='stretch',
                         width='100%')

    if (legendPosition.find("right") >= 0):
        out.add_class("rigthlgd")
        boxLgnd = Box(children=[labelDados, out, stylesheets],
                      layout=box_legenda)
    else:
        labelDados.add_class("rigthlgd")
        boxLgnd = Box(children=[out, labelDados, stylesheets],
                      layout=box_legenda)

    box_layout = Layout(display='flex',
                        flex_flow='column',
                        align_items='stretch',
                        width='100%')

    layer.on_hover(__update_html)

    if (legendPosition.find("bottom") >= 0):
        box = Box(children=[elemTitle, m, boxLgnd], layout=box_layout)
    else:
        box = Box(children=[elemTitle, boxLgnd, m], layout=box_layout)
    return box
Ejemplo n.º 12
0
        np.percentile(list(choro_map_data_covidxdep.values()), 37.5),
        np.median(list(choro_map_data_covidxdep.values())),
        np.percentile(list(choro_map_data_covidxdep.values()), 62.5),
        np.percentile(list(choro_map_data_covidxdep.values()), 75),
        np.percentile(list(choro_map_data_covidxdep.values()), 87.5),
        max(choro_map_data_covidxdep.values())
    ],
    vmin=250,
    vmax=66000)

# In[17]:

layercoviddepa = ipyleaflet.Choropleth(geo_data=geo_json_data,
                                       choro_data=choro_map_data_covidxdep,
                                       colormap=colormap,
                                       border_color='black',
                                       style={
                                           'fillOpacity': 0.6,
                                           'dashArray': '5, 5'
                                       })

mapacoviddep = ipyleaflet.Map(center=(-10, -70), zoom=4.9)
mapacoviddep.add_layer(layercoviddepa)
display(mapacoviddep)

# **COVID PER CAPITA**

# In[18]:

xdepartamentos2 = xdepartamentos.sort_values(by='unique_values',
                                             ascending=True).drop([10])
xdepartamentos2 = xdepartamentos2.reset_index()
Ejemplo n.º 13
0
    def show(self, **kwargs):
        """
        Generate and return the map object for displaying the map
        Parameters
        -----------
        None

        Returns
        ----------
            map:ipyleaflet.Map
        """
        self.map = ipyleaflet.Map(
            layers=(ipyleaflet.basemap_to_tiles(
                ipyleaflet.basemaps.CartoDB.Positron),),
            **kwargs
        )
        choro_layer = ipyleaflet.Choropleth(
            name=self.dataset,
            geo_data=self.geo_data,
            choro_data=self.choro_data[self.selectedAttr][self.selectedYear],
            colormap=linear.YlOrRd_04,
            style={
                'opacity': 1,
                'weight': 1.9,
                'dashArray': '9',
                'fillOpacity': 0.5}
        )

        def handle_click(**kwargs):
            if kwargs['event'] == 'click':
                clickedFips = kwargs['properties']['GEOID']
                clickedName = self.fipsLookUp[clickedFips]
                dataBox.value = f"{clickedName} : {self.choro_data[self.selectedAttr][self.selectedYear][clickedFips]:,}"
                self.clickedID = clickedFips
        choro_layer.on_click(handle_click)
        # Year select

        def handle_year_change(change):
            new_year = str(change.new)
            choro_layer.choro_data = self.choro_data[self.selectedAttr][new_year]
            if self.clickedID:
                clickedName = self.fipsLookUp[self.clickedID]
                dataBox.value = f"{clickedName} : {self.choro_data[self.selectedAttr][new_year][self.clickedID]:,}"
            self.selectedYear = new_year
        yearList = self.availableYearDict[self.selectedAttr]
        yearListNum = list(map(int, yearList))
        minYear = min(yearListNum)
        maxYear = max(yearListNum)
        yearSlider, yearWidget = self.yearSlider(minYear, maxYear, maxYear)
        yearSlider.observe(handle_year_change, 'value')
        dataBox, dataWidget = self.dataBox()

        def handle_attr_change(change):
            new_attr = change.new
            choro_layer.choro_data = self.choro_data[new_attr][self.selectedYear]
            if self.clickedID:
                clickedName = self.fipsLookUp[self.clickedID]
                dataBox.value = f"{clickedName} : {self.choro_data[new_attr][self.selectedYear][self.clickedID]:,}"
            self.selectedAttr = new_attr
        attrDropdown, attrDropdownWidget = self.attrDropdown()
        attrDropdown.observe(handle_attr_change, "value")
        # Add to map
        self.map.add_layer(choro_layer)
        self.map.add_control(ipyleaflet.LayersControl())
        self.map.add_control(ipyleaflet.FullScreenControl())
        self.map.add_control(attrDropdownWidget)
        self.map.add_control(yearWidget)
        self.map.add_control(dataWidget)
        return self.map
Ejemplo n.º 14
0
geo_json_data = load_data(
    'https://raw.githubusercontent.com/jupyter-widgets/ipyleaflet/master/examples/us-states.json',
    'us-states.json', json.load)

unemployment = load_data(
    'https://raw.githubusercontent.com/jupyter-widgets/ipyleaflet/master/examples/US_Unemployment_Oct2012.csv',
    'US_Unemployment_Oct2012.csv', pd.read_csv)

unemployment = dict(
    zip(unemployment['State'].tolist(), unemployment['Unemployment'].tolist()))

layer = ipyleaflet.Choropleth(geo_data=geo_json_data,
                              choro_data=unemployment,
                              colormap=linear.YlOrRd_04,
                              border_color='black',
                              style={
                                  'fillOpacity': 0.8,
                                  'dashArray': '5, 5'
                              })

m = ipyleaflet.Map(center=(43, -100), zoom=4)
m.add_layer(layer)
m

import seaborn as sns
sns.set(style="white")

# Load the example mpg dataset
mpg = sns.load_dataset("mpg")

# Plot miles per gallon against horsepower with other semantics
Ejemplo n.º 15
0
    def renderMap(self):
        '''creates ipyleaflet map'''
        self.m = ipyleaflet.Map(center=(33.66832279243364, 135.8861750364304),
                                zoom=10)
        # self.grid
        options = []
        options.extend(list(self.all_style_dict.keys()))
        option = options[0]

        dates = sorted([date for date in self.all_style_dict[option].keys()])

        self.layer = ipyleaflet.Choropleth(
            geo_data=self.grid,
            choro_data=self.all_style_dict[option][str(dates[0])],
            colormap=linear.YlOrRd_04,
            style={
                "fillOpacity": 0.8,
                "dashArray": "5, 5"
            },
        )
        self.m.add_layer(self.layer)

        self.time_slider = widgets.SelectionSlider(
            options=dates,
            value=dates[0],
            description="TimeStamp",
            disabled=False,
            continuous_update=False,
            orientation="horizontal",
            readout=True,
        )
        self.time_slider.observe(self.on_slide, "value")
        widget_control_slider = ipyleaflet.WidgetControl(
            widget=self.time_slider, position="bottomright")

        self.m.add_control(widget_control_slider)
        # widgets.interact(update_map_time, timeStamp = self.time_slider)

        self.dropdown = widgets.Dropdown(options=options,
                                         value=option,
                                         description="Select layer")
        self.dropdown.observe(self.on_click, "value")

        widget_control = ipyleaflet.WidgetControl(widget=self.dropdown,
                                                  position="topright")
        self.m.add_control(widget_control)

        self.color_range = widgets.IntRangeSlider(
            value=[self.layer.value_min, self.layer.value_max],
            min=self.layer.value_min,
            max=self.layer.value_max,
            step=1,
            description="ColorBar:",
            disabled=False,
            continuous_update=False,
            orientation="horizontal",
            readout=True,
            readout_format="d",
        )
        self.zoom_to_location({"new": list(self.BBOXes.keys())[0]})

        self.color_range.observe(self.on_selection, "value")

        widget_control = ipyleaflet.WidgetControl(widget=self.color_range,
                                                  position="bottomright")
        self.m.add_control(widget_control)

        locations = widgets.Dropdown(
            options=self.BBOXes.keys(),
            value=list(self.BBOXes.keys())[0],
            description="Location:",
        )
        locations.observe(self.zoom_to_location, "value")

        widget_control = ipyleaflet.WidgetControl(widget=locations,
                                                  position="topright")
        self.m.add_control(widget_control)

        self.m.observe(self.zoom_out_to_target_bounds, "bounds")

        def compute_style(feature, colormap, choro_data):
            return {
                "fillColor": colormap(choro_data),
                "color": "white",
                "weight": random.randint(1, 3),
            }

        self.layer.style_callback = compute_style