Ejemplo n.º 1
0
"""Launches a worker with the appropriate queue and database based on an index into a config file."""
from pathlib import Path

from iris.data import PersistentQueue, Database
from iris.rings import W2
from iris.worker import Worker

# shield for multiprocessing
if __name__ == '__main__':
    root = Path(
        __file__).parent / 'data' / 'arbitrary-spherical-coma-astigmatism'
    q = PersistentQueue(root / 'queue.pkl')
    db = Database(root,
                  fields=[
                      'truth_rmswfe', 'cost_first', 'cost_final',
                      'rrmswfe_final', 'time', 'nit'
                  ])
    w = Worker(q,
               db,
               optmode='global',
               simopts={
                   'guess': [0] * 18,
                   'decoder_ring': W2,
               },
               optopts={
                   'parallel': True,
                   'nthreads': 7,
                   'ftol': 1e-7,
               },
               work_time=60 * 17)
    w.start()
Ejemplo n.º 2
0
low_value, mid_value, high_value, x_factor, y_factor = make_mag_xy_random_values(
)

xmag_low = low_value * x_factor
ymag_low = low_value * y_factor

xmag_mid = mid_value * x_factor
ymag_mid = mid_value * y_factor

xmag_high = high_value * x_factor
ymag_high = high_value * y_factor

z7 = xmag_low
z8 = ymag_low
z14 = xmag_mid
z15 = ymag_mid
z23 = xmag_high
z24 = ymag_high

# stack all truths together and split them into 5 chunks for 5 workers per datatype
alltruth = np.stack(
    (z4, z5, z6, z7, z8, z9, z12, z13, z14, z15, z16, z21, z22, z23, z24, z25),
    axis=1)
truths = list(alltruth)

p = Path(__file__).parent  #/ '..' / '..' /
p = p / 'data' / 'arbitrary-spherical-coma-astigmatism'
q = PersistentQueue(p / 'queue.pkl', overwrite=True)
q.put_many(truths)
Ejemplo n.º 3
0
xcoef, ycoef = np.cos(angles), np.sin(angles)  # flipped -- optics convention
xcoef = (xcoef * coma_amounts_tiled.reshape((s, 1))).ravel()
ycoef = (ycoef * coma_amounts_tiled.reshape((s, 1))).ravel()

out_coma = np.zeros((sphcoef.shape[0], 16))
out_coma[:, 5] = sphcoef
out_coma[:, 10] = sphcoef / -2
out_coma[:, 15] = sphcoef / 4
out_coma[:, 3] = xcoef
out_coma[:, 4] = ycoef

out_astig = np.zeros((sphcoef.shape[0], 16))
out_astig[:, 5] = sphcoef
out_astig[:, 10] = sphcoef / -2
out_astig[:, 15] = sphcoef / 4
out_astig[:, 1] = xcoef
out_astig[:, 2] = ycoef

root = Path(__file__).parent / 'data' / 'coma-vs-angle'
p = root / 'queue.pkl'
q = PersistentQueue(p, overwrite=True)
items = list(out_coma)
q.put_many(items)


root = Path(__file__).parent / 'data' / 'astigmatism-vs-angle'
p = root / 'queue.pkl'
q = PersistentQueue(p, overwrite=True)
items = list(out_astig)
q.put_many(items)
Ejemplo n.º 4
0
from iris.data import PersistentQueue

# folders for each queue
root = Path(__file__).parent / 'data' / 'cost-function-design'
stem1 = root / 'diffraction_sumsquarediff'
stem2 = root / '____________sumsquarediff'
stem3 = root / 'diffraction_manhattan'
stem4 = root / '____________manhattan'
stems = (stem1, stem2, stem3, stem4)
qs = []
for stem in stems:
    counter, local = 1, []
    for i in range(5):
        p = stem / str(counter)
        p.mkdir(parents=True, exist_ok=True)
        local.append(PersistentQueue(p / 'queue.pkl', overwrite=True))
        counter += 1
    qs.append(local)

# set the seed and generate 'fudge factor' arrays centered on 1 with stdev 1/2 and 500 samples e/a
np.random.seed(1234)
fudge1 = np.random.normal(loc=1, scale=0.5, size=500)
fudge2 = np.random.normal(loc=1, scale=0.5, size=500)
z16_factor, z25_factor = -0.5, 0.5**2

# no defocus
# uniform normal distributions of size 500 and range [0, 0.25]
truths_z4 = np.zeros(500)
truths_z9 = np.random.random(truths_z4.shape) * .25

# Z16 and Z25 are derived from Z9 and have value -1/2 and +1/4 respectively
Ejemplo n.º 5
0
    opt = _mtf_cost_core_manhattan
    ftol = 5e-4
else:
    opt = _mtf_cost_core_sumsquarediff
    ftol = 1e-7

if diff:
    optargs = ((_mtf_cost_core_diffractiondiv, opt), None)
else:
    optargs = ((opt, ), None)

# shield for multiprocessing
if __name__ == '__main__':
    root = Path(cfg['root']).expanduser()
    base = root / target[0] / target[1]
    q = PersistentQueue(base / 'queue.pkl')
    db = Database(base,
                  fields=[
                      'truth_rmswfe', 'cost_first', 'cost_final',
                      'rrmswfe_final', 'time', 'nit'
                  ])
    w = Worker(q,
               db,
               optmode='global',
               optopts={
                   'parallel': True,
                   'nthreads': 23,
                   'ftol': ftol,
               },
               optcoreopts=optargs,
               work_time=60 * 7)