Ejemplo n.º 1
0
 def test_promoted_auxiliary_ignore(self):
     self.wibble = netcdf_variable('wibble', 'lat wibble', np.float)
     self.variables['wibble'] = self.wibble
     self.orography.coordinates = 'wibble'
     with mock.patch('netCDF4.Dataset', return_value=self.dataset), \
             mock.patch('warnings.warn') as warn:
         cf_group = CFReader('dummy').cf_group.promoted
         promoted = ['wibble', 'orography']
         self.assertEqual(set(cf_group.keys()), set(promoted))
         for name in promoted:
             self.assertIs(cf_group[name].cf_data, getattr(self, name))
         self.assertEqual(warn.call_count, 2)
Ejemplo n.º 2
0
 def test_promoted_auxiliary_ignore(self):
     self.wibble = netcdf_variable('wibble', 'lat wibble', np.float)
     self.variables['wibble'] = self.wibble
     self.orography.coordinates = 'wibble'
     with mock.patch('netCDF4.Dataset', return_value=self.dataset), \
             mock.patch('warnings.warn') as warn:
         cf_group = CFReader('dummy').cf_group.promoted
         promoted = ['wibble', 'orography']
         self.assertEqual(set(cf_group.keys()), set(promoted))
         for name in promoted:
             self.assertIs(cf_group[name].cf_data, getattr(self, name))
         self.assertEqual(warn.call_count, 2)
Ejemplo n.º 3
0
 def test_promoted_auxiliary_ignore(self):
     self.wibble = netcdf_variable("wibble", "lat wibble", np.float64)
     self.variables["wibble"] = self.wibble
     self.orography.coordinates = "wibble"
     with mock.patch("netCDF4.Dataset",
                     return_value=self.dataset), mock.patch(
                         "warnings.warn") as warn:
         cf_group = CFReader("dummy").cf_group.promoted
         promoted = ["wibble", "orography"]
         self.assertEqual(set(cf_group.keys()), set(promoted))
         for name in promoted:
             self.assertIs(cf_group[name].cf_data, getattr(self, name))
         self.assertEqual(warn.call_count, 2)
Ejemplo n.º 4
0
 def test_create_formula_terms(self):
     with mock.patch("netCDF4.Dataset", return_value=self.dataset):
         cf_group = CFReader("dummy").cf_group
         self.assertEqual(len(cf_group), len(self.variables))
         # Check there is a singular data variable.
         group = cf_group.data_variables
         self.assertEqual(len(group), 1)
         self.assertEqual(list(group.keys()), ["temp"])
         self.assertIs(group["temp"].cf_data, self.temp)
         # Check there are three coordinates.
         group = cf_group.coordinates
         self.assertEqual(len(group), 3)
         coordinates = ["height", "lat", "lon"]
         self.assertEqual(set(group.keys()), set(coordinates))
         for name in coordinates:
             self.assertIs(group[name].cf_data, getattr(self, name))
         # Check there are three auxiliary coordinates.
         group = cf_group.auxiliary_coordinates
         self.assertEqual(len(group), 3)
         aux_coordinates = ["delta", "sigma", "orography"]
         self.assertEqual(set(group.keys()), set(aux_coordinates))
         for name in aux_coordinates:
             self.assertIs(group[name].cf_data, getattr(self, name))
         # Check all the auxiliary coordinates are formula terms.
         formula_terms = cf_group.formula_terms
         self.assertEqual(set(group.items()), set(formula_terms.items()))
         # Check there are three bounds.
         group = cf_group.bounds
         self.assertEqual(len(group), 3)
         bounds = ["height_bnds", "delta_bnds", "sigma_bnds"]
         self.assertEqual(set(group.keys()), set(bounds))
         for name in bounds:
             self.assertEqual(group[name].cf_data, getattr(self, name))
Ejemplo n.º 5
0
 def test_create_formula_terms(self):
     with mock.patch('netCDF4.Dataset', return_value=self.dataset):
         cf_group = CFReader('dummy').cf_group
         self.assertEqual(len(cf_group), len(self.variables))
         # Check there is a singular data variable.
         group = cf_group.data_variables
         self.assertEqual(len(group), 1)
         self.assertEqual(group.keys(), ['temp'])
         self.assertIs(group['temp'].cf_data, self.temp)
         # Check there are three coordinates.
         group = cf_group.coordinates
         self.assertEqual(len(group), 3)
         self.assertEqual(group.viewkeys(), set(['height', 'lat', 'lon']))
         self.assertIs(group['height'].cf_data, self.height)
         self.assertIs(group['lat'].cf_data, self.lat)
         self.assertIs(group['lon'].cf_data, self.lon)
         # Check there are three auxiliary coordinates.
         group = cf_group.auxiliary_coordinates
         self.assertEqual(len(group), 3)
         self.assertEqual(group.viewkeys(),
                          set(['delta', 'sigma', 'orography']))
         self.assertIs(group['delta'].cf_data, self.delta)
         self.assertIs(group['sigma'].cf_data, self.sigma)
         self.assertIs(group['orography'].cf_data, self.orography)
         # Check all the auxiliary coordinates are formula terms.
         formula_terms = cf_group.formula_terms
         self.assertEqual(group.viewitems(), formula_terms.viewitems())
Ejemplo n.º 6
0
 def test_associate_formula_terms_with_data_variable(self):
     with mock.patch('netCDF4.Dataset', return_value=self.dataset):
         cf_group = CFReader('dummy').cf_group
         self.assertEqual(len(cf_group), len(self.variables))
         # Check the cf-group associated with the data variable.
         temp_cf_group = cf_group['temp'].cf_group
         # Check the data variable is associated with six variables.
         self.assertEqual(len(temp_cf_group), 6)
         # Check there are three coordinates.
         group = temp_cf_group.coordinates
         self.assertEqual(len(group), 3)
         self.assertEqual(group.viewkeys(), set(['height', 'lat', 'lon']))
         self.assertIs(group['height'].cf_data, self.height)
         self.assertIs(group['lat'].cf_data, self.lat)
         self.assertIs(group['lon'].cf_data, self.lon)
         # Check there are three auxiliary coordinates.
         group = temp_cf_group.auxiliary_coordinates
         self.assertEqual(len(group), 3)
         self.assertEqual(group.viewkeys(),
                          set(['delta', 'sigma', 'orography']))
         self.assertIs(group['delta'].cf_data, self.delta)
         self.assertIs(group['sigma'].cf_data, self.sigma)
         self.assertIs(group['orography'].cf_data, self.orography)
         # Check all the auxiliary coordinates are formula terms.
         formula_terms = cf_group.formula_terms
         self.assertEqual(group.viewitems(), formula_terms.viewitems())
         # Check the terms by root.
         self.assertEqual(formula_terms['delta'].cf_terms_by_root,
                          dict(height='a'))
         self.assertEqual(formula_terms['sigma'].cf_terms_by_root,
                          dict(height='b'))
         self.assertEqual(formula_terms['orography'].cf_terms_by_root,
                          dict(height='orog'))
Ejemplo n.º 7
0
 def test_create_formula_terms(self):
     with mock.patch('netCDF4.Dataset', return_value=self.dataset):
         cf_group = CFReader('dummy').cf_group
         self.assertEqual(len(cf_group), len(self.variables))
         # Check there is a singular data variable.
         group = cf_group.data_variables
         self.assertEqual(len(group), 1)
         self.assertEqual(list(group.keys()), ['temp'])
         self.assertIs(group['temp'].cf_data, self.temp)
         # Check there are three coordinates.
         group = cf_group.coordinates
         self.assertEqual(len(group), 3)
         coordinates = ['height', 'lat', 'lon']
         self.assertEqual(set(group.keys()), set(coordinates))
         for name in coordinates:
             self.assertIs(group[name].cf_data, getattr(self, name))
         # Check there are three auxiliary coordinates.
         group = cf_group.auxiliary_coordinates
         self.assertEqual(len(group), 3)
         aux_coordinates = ['delta', 'sigma', 'orography']
         self.assertEqual(set(group.keys()), set(aux_coordinates))
         for name in aux_coordinates:
             self.assertIs(group[name].cf_data, getattr(self, name))
         # Check all the auxiliary coordinates are formula terms.
         formula_terms = cf_group.formula_terms
         self.assertEqual(set(group.items()), set(formula_terms.items()))
         # Check there are three bounds.
         group = cf_group.bounds
         self.assertEqual(len(group), 3)
         bounds = ['height_bnds', 'delta_bnds', 'sigma_bnds']
         self.assertEqual(set(group.keys()), set(bounds))
         for name in bounds:
             self.assertEqual(group[name].cf_data, getattr(self, name))
Ejemplo n.º 8
0
 def test_formula_terms_ignore(self):
     self.orography.dimensions = ['lat', 'wibble']
     with mock.patch('netCDF4.Dataset', return_value=self.dataset), \
             mock.patch('warnings.warn') as warn:
         cf_group = CFReader('dummy').cf_group
         group = cf_group.promoted
         self.assertEqual(list(group.keys()), ['orography'])
         self.assertIs(group['orography'].cf_data, self.orography)
         self.assertEqual(warn.call_count, 1)
Ejemplo n.º 9
0
 def test_formula_terms_ignore(self):
     self.orography.dimensions = ["lat", "wibble"]
     with mock.patch("netCDF4.Dataset",
                     return_value=self.dataset), mock.patch(
                         "warnings.warn") as warn:
         cf_group = CFReader("dummy").cf_group
         group = cf_group.promoted
         self.assertEqual(list(group.keys()), ["orography"])
         self.assertIs(group["orography"].cf_data, self.orography)
         self.assertEqual(warn.call_count, 1)
Ejemplo n.º 10
0
 def test_auxiliary_ignore(self):
     self.x.dimensions = ['lat', 'wibble']
     with mock.patch('netCDF4.Dataset', return_value=self.dataset), \
             mock.patch('warnings.warn') as warn:
         cf_group = CFReader('dummy').cf_group
         promoted = ['x', 'orography']
         group = cf_group.promoted
         self.assertEqual(set(group.keys()), set(promoted))
         for name in promoted:
             self.assertIs(group[name].cf_data, getattr(self, name))
         self.assertEqual(warn.call_count, 1)
Ejemplo n.º 11
0
 def test_auxiliary_ignore(self):
     self.x.dimensions = ["lat", "wibble"]
     with mock.patch("netCDF4.Dataset",
                     return_value=self.dataset), mock.patch(
                         "warnings.warn") as warn:
         cf_group = CFReader("dummy").cf_group
         promoted = ["x", "orography"]
         group = cf_group.promoted
         self.assertEqual(set(group.keys()), set(promoted))
         for name in promoted:
             self.assertIs(group[name].cf_data, getattr(self, name))
         self.assertEqual(warn.call_count, 1)
Ejemplo n.º 12
0
 def test_formula_terms_ignore(self):
     self.orography.dimensions = ['lat', 'wibble']
     for state in [False, True]:
         with mock.patch('netCDF4.Dataset', return_value=self.dataset), \
                 iris.FUTURE.context(netcdf_promote=state), \
                 mock.patch('warnings.warn') as warn:
             cf_group = CFReader('dummy').cf_group
             if state:
                 group = cf_group.promoted
                 self.assertEqual(list(group.keys()), ['orography'])
                 self.assertIs(group['orography'].cf_data, self.orography)
             else:
                 self.assertEqual(len(cf_group.promoted), 0)
         self.assertEqual(warn.call_count, 1)
Ejemplo n.º 13
0
 def test_auxiliary_ignore(self):
     self.x.dimensions = ['lat', 'wibble']
     for state in [False, True]:
         with mock.patch('netCDF4.Dataset', return_value=self.dataset), \
                 iris.FUTURE.context(netcdf_promote=state), \
                 mock.patch('warnings.warn') as warn:
             cf_group = CFReader('dummy').cf_group
             if state:
                 promoted = ['x', 'orography']
                 group = cf_group.promoted
                 self.assertEqual(group.viewkeys(), set(promoted))
                 for name in promoted:
                     self.assertIs(group[name].cf_data, getattr(self, name))
             else:
                 self.assertEqual(len(cf_group.promoted), 0)
         self.assertEqual(warn.call_count, 1)
Ejemplo n.º 14
0
 def test_promote_reference(self):
     with mock.patch('netCDF4.Dataset', return_value=self.dataset):
         cf_group = CFReader('dummy').cf_group
         self.assertEqual(len(cf_group), len(self.variables))
         # Check the number of data variables.
         self.assertEqual(len(cf_group.data_variables), 1)
         self.assertEqual(list(cf_group.data_variables.keys()), ['temp'])
         # Check the number of promoted variables.
         self.assertEqual(len(cf_group.promoted), 1)
         self.assertEqual(list(cf_group.promoted.keys()), ['orography'])
         # Check the promoted variable dependencies.
         group = cf_group.promoted['orography'].cf_group.coordinates
         self.assertEqual(len(group), 2)
         coordinates = ('lat', 'lon')
         self.assertEqual(set(group.keys()), set(coordinates))
         for name in coordinates:
             self.assertIs(group[name].cf_data, getattr(self, name))
Ejemplo n.º 15
0
 def test_associate_formula_terms_with_data_variable(self):
     with mock.patch("netCDF4.Dataset", return_value=self.dataset):
         cf_group = CFReader("dummy").cf_group
         self.assertEqual(len(cf_group), len(self.variables))
         # Check the cf-group associated with the data variable.
         temp_cf_group = cf_group["temp"].cf_group
         # Check the data variable is associated with eight variables.
         self.assertEqual(len(temp_cf_group), 8)
         # Check there are three coordinates.
         group = temp_cf_group.coordinates
         self.assertEqual(len(group), 3)
         coordinates = ["height", "lat", "lon"]
         self.assertEqual(set(group.keys()), set(coordinates))
         for name in coordinates:
             self.assertIs(group[name].cf_data, getattr(self, name))
         # Check the height coordinate is bounded.
         group = group["height"].cf_group
         self.assertEqual(len(group.bounds), 1)
         self.assertIn("height_bnds", group.bounds)
         self.assertIs(group["height_bnds"].cf_data, self.height_bnds)
         # Check there are five auxiliary coordinates.
         group = temp_cf_group.auxiliary_coordinates
         self.assertEqual(len(group), 5)
         aux_coordinates = ["delta", "sigma", "orography", "x", "y"]
         self.assertEqual(set(group.keys()), set(aux_coordinates))
         for name in aux_coordinates:
             self.assertIs(group[name].cf_data, getattr(self, name))
         # Check all the auxiliary coordinates are formula terms.
         formula_terms = cf_group.formula_terms
         self.assertTrue(
             set(formula_terms.items()).issubset(list(group.items())))
         # Check the terms by root.
         for name, term in zip(aux_coordinates, ["a", "b", "orog"]):
             self.assertEqual(formula_terms[name].cf_terms_by_root,
                              dict(height=term))
         # Check the bounded auxiliary coordinates.
         for name, name_bnds in zip(["delta", "sigma"],
                                    ["delta_bnds", "sigma_bnds"]):
             aux_coord_group = group[name].cf_group
             self.assertEqual(len(aux_coord_group.bounds), 1)
             self.assertIn(name_bnds, aux_coord_group.bounds)
             self.assertIs(
                 aux_coord_group[name_bnds].cf_data,
                 getattr(self, name_bnds),
             )
Ejemplo n.º 16
0
    def load_cube_from_cdl(self, cdl_string, cdl_path, nc_path):
        """
        Load the 'phenom' data variable in a CDL testcase, as a cube.

        Using ncgen, CFReader and the _load_cube call.

        """
        # Write the CDL to a file.
        with open(cdl_path, "w") as f_out:
            f_out.write(cdl_string)

        # Create a netCDF file from the CDL file.
        command = "ncgen -o {} {}".format(nc_path, cdl_path)
        subprocess.check_call(command, shell=True)

        # Simulate the inner part of the file reading process.
        cf = CFReader(nc_path)
        # Grab a data variable : FOR NOW always grab the 'phenom' variable.
        cf_var = cf.cf_group.data_variables["phenom"]

        engine = iris.fileformats.netcdf._actions_engine()

        # If debug enabled, switch on the activation summary debug output.
        # Use 'patch' so it is restored after the test.
        self.patch("iris.fileformats.netcdf.DEBUG", self.debug)

        # Call the main translation function to load a single cube.
        # _load_cube establishes per-cube facts, activates rules and
        # produces an actual cube.
        cube = _load_cube(engine, cf, cf_var, nc_path)

        # Also Record, on the cubes, which hybrid coord elements were identified
        # by the rules operation.
        # Unlike the other translations, _load_cube does *not* convert this
        # information into actual cube elements.  That is instead done by
        # `iris.fileformats.netcdf._load_aux_factory`.
        # For rules testing, it is anyway more convenient to deal with the raw
        # data, as each factory type has different validity requirements to
        # build it, and none of that is relevant to the rules operation.
        cube._formula_type_name = engine.requires.get("formula_type")
        cube._formula_terms_byname = engine.requires.get("formula_terms")

        # Always returns a single cube.
        return cube
Ejemplo n.º 17
0
 def test_associate_formula_terms_with_data_variable(self):
     with mock.patch('netCDF4.Dataset', return_value=self.dataset):
         cf_group = CFReader('dummy').cf_group
         self.assertEqual(len(cf_group), len(self.variables))
         # Check the cf-group associated with the data variable.
         temp_cf_group = cf_group['temp'].cf_group
         # Check the data variable is associated with eight variables.
         self.assertEqual(len(temp_cf_group), 8)
         # Check there are three coordinates.
         group = temp_cf_group.coordinates
         self.assertEqual(len(group), 3)
         coordinates = ['height', 'lat', 'lon']
         self.assertEqual(set(group.keys()), set(coordinates))
         for name in coordinates:
             self.assertIs(group[name].cf_data, getattr(self, name))
         # Check the height coordinate is bounded.
         group = group['height'].cf_group
         self.assertEqual(len(group.bounds), 1)
         self.assertIn('height_bnds', group.bounds)
         self.assertIs(group['height_bnds'].cf_data, self.height_bnds)
         # Check there are five auxiliary coordinates.
         group = temp_cf_group.auxiliary_coordinates
         self.assertEqual(len(group), 5)
         aux_coordinates = ['delta', 'sigma', 'orography', 'x', 'y']
         self.assertEqual(set(group.keys()), set(aux_coordinates))
         for name in aux_coordinates:
             self.assertIs(group[name].cf_data, getattr(self, name))
         # Check all the auxiliary coordinates are formula terms.
         formula_terms = cf_group.formula_terms
         self.assertTrue(
             set(formula_terms.items()).issubset(list(group.items())))
         # Check the terms by root.
         for name, term in zip(aux_coordinates, ['a', 'b', 'orog']):
             self.assertEqual(formula_terms[name].cf_terms_by_root,
                              dict(height=term))
         # Check the bounded auxiliary coordinates.
         for name, name_bnds in zip(['delta', 'sigma'],
                                    ['delta_bnds', 'sigma_bnds']):
             aux_coord_group = group[name].cf_group
             self.assertEqual(len(aux_coord_group.bounds), 1)
             self.assertIn(name_bnds, aux_coord_group.bounds)
             self.assertIs(aux_coord_group[name_bnds].cf_data,
                           getattr(self, name_bnds))
Ejemplo n.º 18
0
 def test_create_global_attributes(self):
     with mock.patch('netCDF4.Dataset', return_value=self.dataset):
         global_attrs = CFReader('dummy').cf_group.global_attributes
         self.assertEqual(global_attrs['dimensions'],
                          'something something_else')
Ejemplo n.º 19
0
 def test_create_global_attributes(self):
     with mock.patch("netCDF4.Dataset", return_value=self.dataset):
         global_attrs = CFReader("dummy").cf_group.global_attributes
         self.assertEqual(global_attrs["dimensions"],
                          "something something_else")