Ejemplo n.º 1
0
    def test_sample_scales(self):
        isa = ISA(2, 5, num_scales=4)

        # get a copy of subspaces
        subspaces = isa.subspaces()

        # replace scales
        for gsm in subspaces:
            gsm.scales = asarray([1., 2., 3., 4.])

        isa.set_subspaces(subspaces)

        samples = isa.sample_prior(100000)
        scales = isa.sample_scales(samples)

        # simple sanity checks
        self.assertEqual(scales.shape[0], isa.num_hiddens)
        self.assertEqual(scales.shape[1], samples.shape[1])

        priors = mean(
            abs(scales.flatten() - asarray([[1., 2., 3., 4.]]).T) < 0.5, 1)

        # prior probabilities of scales should be equal and sum up to one
        self.assertLess(max(abs(priors - 1. / subspaces[0].num_scales)), 0.01)
        self.assertLess(abs(sum(priors) - 1.), 1e-10)
Ejemplo n.º 2
0
	def test_sample_scales(self):
		isa = ISA(2, 5, num_scales=4)

		# get a copy of subspaces
		subspaces = isa.subspaces()

		# replace scales
		for gsm in subspaces:
			gsm.scales = asarray([1., 2., 3., 4.])

		isa.set_subspaces(subspaces)

		samples = isa.sample_prior(100000)
		scales = isa.sample_scales(samples)

		# simple sanity checks
		self.assertEqual(scales.shape[0], isa.num_hiddens)
		self.assertEqual(scales.shape[1], samples.shape[1])

		priors = mean(abs(scales.flatten() - asarray([[1., 2., 3., 4.]]).T) < 0.5, 1)

		# prior probabilities of scales should be equal and sum up to one
		self.assertLess(max(abs(priors - 1. / subspaces[0].num_scales)), 0.01)
		self.assertLess(abs(sum(priors) - 1.), 1e-10)
Ejemplo n.º 3
0
	def test_evaluate(self):
		isa1 = ISA(2)
		isa1.A = eye(2)

		subspaces = isa1.subspaces()
		for gsm in subspaces:
			gsm.scales = ones(gsm.num_scales)
		isa1.set_subspaces(subspaces)

		# equivalent overcomplete model
		isa2 = ISA(2, 4)
		A = copy(isa2.A)
		A[:, :2] = isa1.A / sqrt(2.)
		A[:, 2:] = isa1.A / sqrt(2.)
		isa2.A = A

		subspaces = isa2.subspaces()
		for gsm in subspaces:
			gsm.scales = ones(gsm.num_scales)
		isa2.set_subspaces(subspaces)

		data = isa1.sample(100)

		# the results should not depend on the parameters
		ll1 = isa1.evaluate(data)
		ll2 = isa2.evaluate(data)

		self.assertLess(abs(ll1 - ll2), 1e-5)

		isa1 = ISA(2)
		isa1.initialize()

		# equivalent overcomplete model
		isa2 = ISA(2, 4)

		isa2.set_subspaces(isa1.subspaces() * 2)
		A = isa2.basis()
		A[:, :2] = isa1.basis()
		A[:, 2:] = 0.
		isa2.set_basis(A)

		data = isa1.sample(100)

		params = isa2.default_parameters()
		params['ais']['num_iter'] = 100
		params['ais']['num_samples'] = 100

		ll1 = isa1.evaluate(data)
		ll2 = isa2.evaluate(data, params)

		self.assertLess(abs(ll1 - ll2), 0.1)
Ejemplo n.º 4
0
    def test_evaluate(self):
        isa1 = ISA(2)
        isa1.A = eye(2)

        subspaces = isa1.subspaces()
        for gsm in subspaces:
            gsm.scales = ones(gsm.num_scales)
        isa1.set_subspaces(subspaces)

        # equivalent overcomplete model
        isa2 = ISA(2, 4)
        A = copy(isa2.A)
        A[:, :2] = isa1.A / sqrt(2.)
        A[:, 2:] = isa1.A / sqrt(2.)
        isa2.A = A

        subspaces = isa2.subspaces()
        for gsm in subspaces:
            gsm.scales = ones(gsm.num_scales)
        isa2.set_subspaces(subspaces)

        data = isa1.sample(100)

        # the results should not depend on the parameters
        ll1 = isa1.evaluate(data)
        ll2 = isa2.evaluate(data)

        self.assertLess(abs(ll1 - ll2), 1e-5)

        isa1 = ISA(2)
        isa1.initialize()

        # equivalent overcomplete model
        isa2 = ISA(2, 4)

        isa2.set_subspaces(isa1.subspaces() * 2)
        A = isa2.basis()
        A[:, :2] = isa1.basis()
        A[:, 2:] = 0.
        isa2.set_basis(A)

        data = isa1.sample(100)

        params = isa2.default_parameters()
        params['ais']['num_iter'] = 100
        params['ais']['num_samples'] = 100

        ll1 = isa1.evaluate(data)
        ll2 = isa2.evaluate(data, params)

        self.assertLess(abs(ll1 - ll2), 0.1)