Ejemplo n.º 1
0
def Accepted(ordered):
    """
    Function which plots the number of accepted configurations in the Metropolis
    algorithm for two temperatures and for an ordered- and a random initial
    configuration.

    Input:
    ordered: True if ordered, False if random
    """
    titles = ['Random input configuration', 'Ordered input configuration']
    fig, ax = plt.subplots(2, 1, figsize=(18, 10), sharex=True)
    MCsteps = np.linspace(0, MC_cycles, MC_cycles, endpoint=True)
    for i in range(2):
        # Initializing the confiuration of the input spin matrix:
        if ordered == False:
            spin_matrix = np.random.choice((-1, 1), (num_spins, num_spins))
        else:
            spin_matrix = np.ones((num_spins, num_spins), np.int8)

        t1 = time.time()
        exp_values_T1 = ising.MC(spin_matrix, MC_cycles, Temp[0])
        t2 = time.time()
        print("Montecarlo time used:", t2 - t1)

        t1 = time.time()
        exp_values_T24 = ising.MC(spin_matrix, MC_cycles, Temp[1])
        t2 = time.time()
        print("Montecarlo time used:", t2 - t1)

        # Extracting the number of accepted configs:
        accepted_list_T1 = exp_values_T1[:, 5]
        accepted_list_T24 = exp_values_T24[:, 5]

        # Changing to ordered input configuration:
        ordered = True

        # Plot:
        ax[i].set_title('{}'.format(titles[i]))
        ax[i].plot(MCsteps, accepted_list_T1, color='C2', label='T = 1.0')
        ax[i].plot(MCsteps, accepted_list_T24, color='C4', label='T = 2.4')
        ax[i].legend(loc='best')
        ax[i].set_yscale('log')
        ax[i].set_xscale('log')
    ax[1].set_xlabel("Monte Carlo cycles", fontsize=20)
    fig.text(0.04,
             0.5,
             'Number of accepted configurations',
             va='center',
             rotation='vertical')
    plt.show()
Ejemplo n.º 2
0
def plot_MC_cycles(Temp):
    """
    This function creates two plots, each containing subplots of the mean energy
    and absolute magnetization as functions of Monte Carlo cycles, for random and
    ordered initial lattice configurations.
    The two plots show the results of two different input temperatures.
    """
    steps = np.linspace(1, MC_cycles, MC_cycles, endpoint=True)
    for i, T in enumerate(Temp):

        # Random initial confiuration
        spin_matrix_R = np.random.choice((-1, 1), (num_spins, num_spins))

        exp_values_R = I.MC(spin_matrix_R, MC_cycles, T)
        energy_avg_R = np.cumsum(exp_values_R[:, 0]) / np.arange(
            1, MC_cycles + 1)
        magnet_abs_avg_R = np.cumsum(exp_values_R[:, 4]) / np.arange(
            1, MC_cycles + 1)
        Energy_R = energy_avg_R / num_spins**2
        MagnetizationAbs_R = magnet_abs_avg_R / num_spins**2

        # Ordered initial confiuration
        spin_matrix_O = np.ones((num_spins, num_spins), np.int8)

        exp_values_O = I.MC(spin_matrix_O, MC_cycles, T)
        energy_avg_O = np.cumsum(exp_values_O[:, 0]) / np.arange(
            1, MC_cycles + 1)
        magnet_abs_avg_O = np.cumsum(exp_values_O[:, 4]) / np.arange(
            1, MC_cycles + 1)
        Energy_O = energy_avg_O / (num_spins**2)
        MagnetizationAbs_O = magnet_abs_avg_O / (num_spins**2)
        #print('Run time: {}'.format(t1-t0))
        fig, ax = plt.subplots(2, 1, figsize=(18, 10),
                               sharex=True)  # plot the calculated values
        plt.suptitle('{}'.format(titles[i]))
        ax[0].plot(steps, Energy_O, color='C0', label='Ordered')
        ax[0].plot(steps, Energy_R, color='C1', label='Random')
        ax[0].set_ylabel("Energy", fontsize=20)
        ax[0].legend(loc='best')

        ax[1].plot(steps, MagnetizationAbs_O, color='C0', label='Ordered')
        ax[1].plot(steps, MagnetizationAbs_R, color='C1', label='Random')
        ax[1].set_ylabel("Magnetization ", fontsize=20)
        ax[1].set_xlabel("Monte Carlo cycles", fontsize=20)
        ax[1].legend(loc='best')
        #ax[0].title(titles[i])
        #plt.savefig('MCT24C2-5.png')

    plt.show()
Ejemplo n.º 3
0
def numerical_solution(spin_matrix, n_cycles, temp, L):
    """
    This function calculates the numerical solution of the 2x2 Ising model
    lattice, using the MC function from ising_model.py
    """

    # Compute quantities
    quantities       = ising.MC(spin_matrix, n_cycles, temp)

    norm             = 1.0/float(n_cycles)
    E_avg            = np.sum(quantities[:,0])*norm
    M_avg            = np.sum(quantities[:,1])*norm
    E2_avg           = np.sum(quantities[:,2])*norm
    M2_avg           = np.sum(quantities[:,3])*norm
    M_abs_avg        = np.sum(quantities[:,4])*norm

    E_var            = (E2_avg - E_avg**2)/(L**2)
    M_var            = (M2_avg - M_avg**2)/(L**2)

    Energy           = E_avg    /(L**2)
    Magnetization    = M_avg    /(L**2)
    MagnetizationAbs = M_abs_avg/(L**2)
    SpecificHeat     = E_var    /(temp**2)  # * L**2?
    Susceptibility   = M_var    /(temp)     # * L**2?

    return Energy, Magnetization, MagnetizationAbs, SpecificHeat, Susceptibility
Ejemplo n.º 4
0
def plotProbability(ordered):
    """
    This function show the probability distribution of energy as histograms for
    two different temperatures and number of Monte Carlo cycles.
    The calculations are done by the MC function found in the ising_model script.
    The mean energy and magnetization is evaluated from a point where steady
    state is reached.
    """
    for cycles, T in zip(MC_cycles, Temp):
        # Initializing the confiuration of the input spin matrix
        if ordered == False:
            #Random configuration
            spin_matrix = np.random.choice((-1, 1), (num_spins, num_spins))
        else:
            #Ground state
            spin_matrix = np.ones((num_spins, num_spins), np.int8)

        t0 = time.time()
        exp_values = ising.MC(spin_matrix, cycles, T)
        t1 = time.time()

        #If temperature is 1.0
        if T == 1.0:
            sp = 30

            norm = 1 / float(cycles - 20000)
            energy_avg = np.sum(exp_values[19999:, 0]) * norm
            #print("1:",energy_avg**2)
            energy2_avg = np.sum(exp_values[19999:, 2]) * norm  #E^2
            #print("2:",energy2_avg)
            energy_var = (energy2_avg - energy_avg**2) / (num_spins**2)

            E = exp_values[19999:, 0]
            E = E / (num_spins**2)

        if T == 2.4:
            sp = 160

            norm = 1 / float(cycles - 40000)
            energy_avg = np.sum(exp_values[39999:, 0]) * norm
            #print("1:",energy_avg**2)
            energy2_avg = np.sum(exp_values[39999:, 2]) * norm
            #print("2:",energy2_avg)
            energy_var = (energy2_avg - energy_avg**2) / (num_spins**2)

            E = exp_values[19999:, 0]
            E = E / (num_spins**2)

        print("Variance T=%s:" % str(T), energy_var)

        n, bins, patches = plt.hist(E, sp, facecolor='plum')
        plt.xlabel('$E$')
        plt.ylabel('Energy distribution')
        plt.title('Energy distribution at $k_BT=%s$' % str(T))
        plt.grid(True)
        plt.show()
Ejemplo n.º 5
0
def plotProbability(ordered):
    """
    Function which plots the probabilities of finding an energy E. Being done
    for two temperatures in the list Temp, and for two corresponding numbers
    of Monte Carlo cycles.

    Input:
    ordered: True if ordered, False if random
    """
    for cycles, T in zip(MC_cycles, Temp):
        # Initializing the confiuration of the input spin matrix:
        if ordered == False:
            spin_matrix = np.random.choice((-1, 1), (num_spins, num_spins))
        else:
            spin_matrix = np.ones((num_spins,num_spins), np.int8)

        t1 = time.time()
        exp_values = ising.MC(spin_matrix, cycles, T)
        t2 = time.time()
        print("Montecarlo time used:", t2-t1)

        #If the temperature is 1.0:
        if T == 1.0:
            spacing = 30

            norm = 1/float(cycles-20000)
            energy_avg = np.sum(exp_values[19999:, 0])*norm
            energy2_avg = np.sum(exp_values[19999:, 2])*norm
            energy_var = (energy2_avg - energy_avg**2)/(num_spins**2)

            E = exp_values[19999:, 0]
            E = E/(num_spins**2)

        #If the temperature is 2.4:
        if T == 2.4:
            spacing = 160

            norm = 1/float(cycles-40000)
            energy_avg = np.sum(exp_values[39999:, 0])*norm
            energy2_avg = np.sum(exp_values[39999:, 2])*norm
            energy_var = (energy2_avg - energy_avg**2)/(num_spins**2)

            E = exp_values[39999:, 0]
            E = E/(num_spins**2)

        print("Variance T=%s:"%str(T), energy_var)

        n, bins, patches = plt.hist(E, spacing, facecolor='blue')
        plt.xlabel('$E$')
        plt.ylabel('Number of times the given energy appears')
        plt.title('Energy distribution at  $k_BT=%s$'%str(T))
        plt.grid(True)
        plt.show()
Ejemplo n.º 6
0
def Accepted(ordered):
    """
    This function plots the number of accepted configurations in the Ising model
    as function of Monte Carlo cycles, calculated by the imported function MC from
    ising_model.py.
    Two subplots are produced, one for steady initial configuration of the lattice
    and one for a random configuration, both containing the accepted values for
    temperature, T=1.0 and T=2.4.
    """
    titles = ['Random input configuration', 'Ordered input configuration']
    fig, ax = plt.subplots(2, 1, figsize=(18, 7), sharex=True)
    Steps = np.linspace(0, MC_cycles, MC_cycles, endpoint=True)
    for i in range(2):
        # Initializing the confiuration of the input spin matrix
        if ordered == False:
            #random configuration
            spin_matrix = np.random.choice((-1, 1), (num_spins, num_spins))
        else:
            #ground state
            spin_matrix = np.ones((num_spins, num_spins), np.int8)
        # Extracting the relevant values from the output matrix from the ising_model
        exp_values_T1 = I.MC(spin_matrix, MC_cycles, Temp[0])
        exp_values_T24 = I.MC(spin_matrix, MC_cycles, Temp[1])
        accepted_list_T1 = exp_values_T1[:, 5]
        accepted_list_T24 = exp_values_T24[:, 5]
        ordered = True
        ax[i].set_title('{}'.format(titles[i]))
        ax[i].loglog(Steps, accepted_list_T1, color='C2', label='T = 1.0')
        ax[i].loglog(Steps, accepted_list_T24, color='C4', label='T = 2.4')
        ax[i].legend(loc='best')
    ax[1].set_xlabel("Monte Carlo cycles", fontsize=20)
    fig.text(0.04,
             0.5,
             'Number of accepted configurations',
             va='center',
             rotation='vertical')
Ejemplo n.º 7
0
def plotProbability():
    """
    This function show the probability distribution of energy as histograms for
    two different temperatures and number of Monte Carlo cycles.
    The calculations are done by the MC function found in the ising_model script.
    The mean energy and magnetization is evaluated from a point where steady
    state is reached.
    """
    for cycles, T in zip(MC_cycles, Temp):
        # Initializing the confiuration of the input spin matrix
        #Ground state
        spin_matrix = np.ones((num_spins, num_spins), np.int8)
        exp_values = I.MC(spin_matrix, cycles, T)

        #If temperature is 1.0
        if T == 1.0:
            # Bin spacing for histogram
            sp = 30
            # Normalization constant
            norm = 1.0 / float(cycles - 20000)
            # Extracting the values of interest
            energy_avg = np.sum(exp_values[19999:, 0]) * norm
            energy2_avg = np.sum(exp_values[19999:, 2]) * norm  #E^2
            energy_var = (energy2_avg - energy_avg**2) / (num_spins**2)
            E = exp_values[19999:, 0] / (num_spins**2)

        if T == 2.4:
            # Bin spacing for histogram
            sp = 160
            # Normalization constant
            norm = 1 / float(cycles - 40000)
            # Extracting the values of interest
            energy_avg = np.sum(exp_values[39999:, 0]) * norm
            energy2_avg = np.sum(exp_values[39999:, 2]) * norm
            energy_var = (energy2_avg - energy_avg**2) / (num_spins**2)
            E = exp_values[39999:, 0] / (num_spins**2)

        print("Variance T=%s:" % str(T), energy_var)

        n, bins, patches = plt.hist(E, sp, facecolor='C0')
        plt.xlabel('$E$')
        plt.ylabel('Energy distribution P(E)')
        plt.title('Energy distribution at  $k_BT=%s$' % str(T))
        plt.grid(True)
        plt.show()
Ejemplo n.º 8
0
def numerical_solution(spin_matrix, num_cycles):
    #This function calculates the numerical solution of our 2x2 ising model
    #lattice, using the MC function from ising_model.py
    exp_values = I.MC(spin_matrix, num_cycles, temp)
    norm = 1.0 / float(num_cycles)
    energy_avg = np.sum(exp_values[:, 0]) * norm
    magnet_avg = np.sum(exp_values[:, 1]) * norm
    energy2_avg = np.sum(exp_values[:, 2]) * norm
    magnet2_avg = np.sum(exp_values[:, 3]) * norm
    magnet_abs_avg = np.sum(exp_values[:, 4]) * norm
    energy_var = (energy2_avg - energy_avg**2) / (num_spins**2)
    magnet_var = (magnet2_avg - magnet_avg**2) / (num_spins**2)

    Energy = energy_avg / (num_spins**2)
    Magnetization = magnet_avg / (num_spins**2)
    MagnetizationAbs = magnet_abs_avg / (num_spins**2)
    SpecificHeat = energy_var / (temp**2)
    Susceptibility = magnet_var / (temp)

    return Energy, Magnetization, MagnetizationAbs, SpecificHeat, Susceptibility
Ejemplo n.º 9
0
def numerical_solution(spin_matrix, num_cycles):
    exp_values = ising.MC(spin_matrix, num_cycles, temp)
    norm = 1.0 / float(num_cycles)

    # <E>, <M>, <E^2>, <M^2> and <|M|>:
    energy_avg = np.sum(exp_values[:, 0]) * norm
    magnet_avg = np.sum(exp_values[:, 1]) * norm
    energy2_avg = np.sum(exp_values[:, 2]) * norm
    magnet2_avg = np.sum(exp_values[:, 3]) * norm
    magnet_abs_avg = np.sum(exp_values[:, 4]) * norm

    # Variances per spin:
    energy_var = (energy2_avg - energy_avg**2) / (num_spins**2)
    magnet_var = (magnet2_avg - magnet_avg**2) / (num_spins**2)

    # Expectation values and quantities per spin:
    Energy = energy_avg / (num_spins**2)
    Magnetization = magnet_avg / (num_spins**2)
    MagnetizationAbs = magnet_abs_avg / (num_spins**2)
    SpecificHeat = energy_var / (temp**2)
    Susceptibility = magnet_var / (temp)

    return Energy, Magnetization, MagnetizationAbs, SpecificHeat, Susceptibility
Ejemplo n.º 10
0
# Number of Monte Carlo cycles for the calculation
MC_cycles = 1000000
norm = 1.0 / float(MC_cycles - 40000)
# Initializing output matrices
E = np.zeros((len(L), len(T)))
M_abs = np.zeros((len(L), len(T)))
m_av = np.zeros((len(L), len(T)))
C_v = np.zeros((len(L), len(T)))
X = np.zeros((len(L), len(T)))

# Looping over all lattice sizes and all temperature steps
for i, spins in enumerate(L):
    spin_matrix = np.ones((L[i], L[i]), np.int8)

    for j, temp in enumerate(T):
        exp_values = I.MC(spin_matrix, MC_cycles, temp)
        # Extracting variables of interest from the output matrix
        energy_avg = np.sum(exp_values[40000:, 0]) * norm
        magnet_abs_avg = np.sum(exp_values[40000:, 4]) * norm
        energy2_avg = np.sum(exp_values[40000:, 2]) * norm
        magnet2_avg = np.sum(exp_values[40000:, 3]) * norm
        energy_var = (energy2_avg - energy_avg**2) / ((spins)**2)
        magnet_var = (magnet2_avg - magnet_abs_avg**2) / ((spins)**2)

        E[i, j] = (energy_avg) / (spins**2)
        M_abs[i, j] = (magnet_abs_avg) / (spins**2)
        C_v[i, j] = energy_var / temp**2
        X[i, j] = magnet_var / temp
        # Print to keep track of calculation
        print(temp)
    print(spins)
Ejemplo n.º 11
0
# Number of Monte Carlo cycles for the calculation:
MC_cycles = 200000
norm = 1.0 / float(MC_cycles - 40000)
# Initializing output matrices:
E = np.zeros((len(L), len(T)))
M_abs = np.zeros((len(L), len(T)))
m_av = np.zeros((len(L), len(T)))
C_v = np.zeros((len(L), len(T)))
X = np.zeros((len(L), len(T)))

# Looping over all lattice sizes and all temperature steps:
for i, spins in enumerate(L):
    spin_matrix = np.ones((L[i], L[i]), np.int8)

    for j, temp in enumerate(T):
        exp_values = ising.MC(spin_matrix, MC_cycles, temp)

        energy_avg = np.sum(exp_values[40000:, 0]) * norm
        magnet_abs_avg = np.sum(exp_values[40000:, 4]) * norm
        energy2_avg = np.sum(exp_values[40000:, 2]) * norm
        magnet2_avg = np.sum(exp_values[40000:, 3]) * norm
        energy_var = (energy2_avg - energy_avg**2) / ((spins)**2)
        magnet_var = (magnet2_avg - magnet_abs_avg**2) / ((spins)**2)

        E[i, j] = (energy_avg) / (spins**2)
        M_abs[i, j] = (magnet_abs_avg) / (spins**2)
        C_v[i, j] = energy_var / temp**2
        X[i, j] = magnet_var / temp
        print(temp)
    print(spins)
Ejemplo n.º 12
0
def plot_MC_cycles(Temp):
    """
    Plots the mean energy and the mean magnetization as functions of Monte
    Carlo cycles. This is being done for the two temperatures.

    Input:
    Temp: The temperatures (Two values in a list)
    """
    MCsteps = np.linspace(1, MC_cycles, MC_cycles, endpoint=True)

    for i, T in enumerate(Temp):
        # Random spin configuration:
        spin_matrix_R = np.random.choice((-1, 1), (num_spins, num_spins))

        time1 = time.time()
        exp_values_R = ising.MC(spin_matrix_R, MC_cycles, T)
        time2 = time.time()
        print("Montecarlo time used:", time2 - time1)

        # Mean values:
        energy_avg_R = np.cumsum(exp_values_R[:, 0]) / np.arange(
            1, MC_cycles + 1)
        magnet_abs_avg_R = np.cumsum(exp_values_R[:, 4]) / np.arange(
            1, MC_cycles + 1)

        # Mean values per spin:
        Energy_R = energy_avg_R / num_spins**2
        MagnetizationAbs_R = magnet_abs_avg_R / num_spins**2

        # Ordered spin confiuration:
        spin_matrix_O = np.ones((num_spins, num_spins), np.int8)

        time1 = time.time()
        exp_values_O = ising.MC(spin_matrix_O, MC_cycles, T)
        time2 = time.time()
        print("Montecarlo time used:", time2 - time1)

        # Mean values:
        energy_avg_O = np.cumsum(exp_values_O[:, 0]) / np.arange(
            1, MC_cycles + 1)
        magnet_abs_avg_O = np.cumsum(exp_values_O[:, 4]) / np.arange(
            1, MC_cycles + 1)

        # Mean values per spin:
        Energy_O = energy_avg_O / (num_spins**2)
        MagnetizationAbs_O = magnet_abs_avg_O / (num_spins**2)

        # Plot:
        fig, ax = plt.subplots(2, 1, figsize=(18, 10),
                               sharex=True)  # plot the calculated values
        plt.suptitle('{}'.format(
            'Energy and magnetization vs. number of Monte Carlo cycles. T=%s' %
            str(T)))

        ax[0].plot(MCsteps, Energy_O, color='C0', label='Ordered')
        ax[0].plot(MCsteps, Energy_R, color='C1', label='Random')
        ax[0].set_ylabel("Mean energy", fontsize=15)
        ax[0].legend(loc='best')

        ax[1].plot(MCsteps, MagnetizationAbs_O, color='C0', label='Ordered')
        ax[1].plot(MCsteps, MagnetizationAbs_R, color='C1', label='Random')
        ax[1].set_ylabel("Mean magnetization (abs. value)", fontsize=15)
        ax[1].set_xlabel("Monte Carlo cycles", fontsize=15)
        ax[1].legend(loc='best')

    plt.show()