Ejemplo n.º 1
0
 def min_value(self, board: Board, depth, alpha, beta):
     """
     function MIN-VALUE(state, alpha, beta) returns a utility value
         if TERMINAL-TEST(state) the return UTILITY(state)
             v <- +infinity
         for each a in ACTIONS(state) do
             v <- MIN(v, MAX-VALUE(RESULT(state, a), alpha, beta))
             if v <= alpha then return v
             beta <- MIN(beta, v)
         return v
     """
     if self.time_left() < self.TIMER_THRESHOLD:
         raise SearchTimeout()
     mini = self
     if board.is_winner(mini) or board.is_loser(mini):
         return board.utility(mini)
     if depth <= 0:
         # what is the score function of the opponent? certainly not ours!
         return self.score(board, mini)
     min_value = math.inf
     for move in board.get_legal_moves():
         min_value = min(
             min_value,
             self.max_value(board.forecast_move(move), depth - 1, alpha,
                            beta))
         if min_value <= alpha:
             return min_value
         beta = min(beta, min_value)
     return min_value
def custom_score_3(game: Board, player) -> float:
    def future_open_move_locations(game, player):
        future_step_locations = []
        blank_spaces = game.get_blank_spaces()
        player_location = game.get_player_location(player)
        s_moves = []
        s_moves.extend(second_moves_outside)
        s_moves.extend(square_moves)
        for move in s_moves:
            location = tuple(map(sum, zip(player_location, move)))
            if location in blank_spaces:
                future_step_locations.append(location)
        return future_step_locations

    def future_open_move_locations_amount(game, player):
        return len(future_open_move_locations(game, player))
    if game.is_winner(player):
        return INFINITY
    if game.is_loser(player):
        return NEG_INFINITY

    future_step_locations_amount = future_open_move_locations_amount(game, player)

    player_moves_count = len(game.get_legal_moves(player))
    opponent_moves = len(game.get_legal_moves(game.get_opponent(player)))

    return float(player_moves_count / 2 + future_step_locations_amount / 3 - opponent_moves / 2)
Ejemplo n.º 3
0
 def max_value(self, board: Board, depth, alpha, beta):
     """
     function MAX-VALUE(state, alpha, beta) returns a utility value
         if TERMINAL-TEST(state) the return UTILITY(state)
             v <- -infinity
         for each a in ACTIONS(state) do
             v <- MAX(v, MIN-VALUE(RESULT(state, a), alpha, beta))
             if v >= beta then return v
             alpha <- MAX(alpha, v)
         return v
     """
     if self.time_left() < self.TIMER_THRESHOLD:
         raise SearchTimeout()
     maxi = self
     if board.is_winner(maxi) or board.is_loser(maxi):
         return board.utility(maxi)
     if depth <= 0:
         return self.score(board, maxi)
     max_value = -math.inf
     for move in board.get_legal_moves():
         max_value = max(
             max_value,
             self.min_value(board.forecast_move(move), depth - 1, alpha,
                            beta))
         if max_value >= beta:
             return max_value
         alpha = max(alpha, max_value)
     return max_value
    def minimax(self, game: Board, depth: int) -> tuple:
        """Implement depth-limited minimax search algorithm as described in
        the lectures.

        This should be a modified version of MINIMAX-DECISION in the AIMA text.
        https://github.com/aimacode/aima-pseudocode/blob/master/md/Minimax-Decision.md

        **********************************************************************
            You MAY add additional methods to this class, or define helper
                 functions to implement the required functionality.
        **********************************************************************

        Parameters
        ----------
        game : isolation.Board
            An instance of the Isolation game `Board` class representing the
            current game state

        depth : int
            Depth is an integer representing the maximum number of plies to
            search in the game tree before aborting

        Returns
        -------
        (int, int)
            The board coordinates of the best move found in the current search;
            (-1, -1) if there are no legal moves

        Notes
        -----
            (1) You MUST use the `self.score()` method for board evaluation
                to pass the project tests; you cannot call any other evaluation
                function directly.

            (2) If you use any helper functions (e.g., as shown in the AIMA
                pseudocode) then you must copy the timer check into the top of
                each helper function or else your agent will timeout during
                testing.
        """
        if self.time_left() < self.TIMER_THRESHOLD:
            raise SearchTimeout()

        if game.is_loser(game.active_player):
            return NEGATIVE_MOVE

        legal_moves = game.get_legal_moves(game.active_player)

        self.current_best_move = NEGATIVE_MOVE
        max_val = NEG_INFINITY
        for next_move in legal_moves:
            new_max = self.min_value(game.forecast_move(next_move),
                                     depth - 1)
            if new_max >= max_val:
                max_val = new_max
                self.current_best_move = next_move

        return self.current_best_move
    def min_value(self, game: Board, depth: int) -> float:
        if self.time_left() < self.TIMER_THRESHOLD:
            raise SearchTimeout()

        if game.is_loser(game.active_player):
            return INFINITY

        if depth <= 0:
            return self.score(game, game.inactive_player)

        legal_moves = game.get_legal_moves(game.active_player)
        move = INFINITY
        for next_move in legal_moves:
            move = min(move,
                       self.max_value(game.forecast_move(next_move), depth - 1))

        return move
    def min_value(self, game: Board, depth: int, alpha: float, beta: float) -> float:
        if self.time_left() < self.TIMER_THRESHOLD:
            raise SearchTimeout()

        if depth <= 0 or game.is_loser(game.active_player):
            return self.score(game, game.inactive_player)

        legal_moves = game.get_legal_moves(game.active_player)
        move = INFINITY
        for next_move in legal_moves:
            move = min(move,
                       self.max_value(game.forecast_move(next_move),
                                      depth - 1,
                                      alpha,
                                      beta))
            if move <= alpha:
                return move
            beta = min(beta, move)
        return beta
Ejemplo n.º 7
0
 def min_value(self, board: Board, depth):
     """
     function MIN-VALUE(state) returns a utility value
     if TERMINAL-TEST(state) then return UTILITY(state)
     v <- infinity
     for each a in ACTIONS(state) do
         v <- MIN(v, MAX-VALUE(RESULT(state, a)))
     return v
     """
     if self.time_left() < self.TIMER_THRESHOLD:
         raise SearchTimeout()
     mini = self
     if board.is_winner(mini) or board.is_loser(mini):
         return board.utility(mini)
     if depth <= 0:
         return self.score(board, mini)
     min_value = math.inf
     for move in board.get_legal_moves():
         min_value = min(
             min_value, self.max_value(board.forecast_move(move),
                                       depth - 1))
     return min_value
Ejemplo n.º 8
0
def custom_score(game: Board, player):
    """Calculate the heuristic value of a game state from the point of view
    of the given player.

    This should be the best heuristic function for your project submission.

    Note: this function should be called from within a Player instance as
    `self.score()` -- you should not need to call this function directly.

    Parameters
    ----------
    game : `isolation.Board`
        An instance of `isolation.Board` encoding the current state of the
        game (e.g., player locations and blocked cells).

    player : object
        A player instance in the current game (i.e., an object corresponding to
        one of the player objects `game.__player_1__` or `game.__player_2__`.)

    Returns
    -------
    float
        The heuristic value of the current game state to the specified player.
    """
    if game.is_loser(player):
        return float("-inf")

    if game.is_winner(player):
        return float("inf")

    opponent = game.get_opponent(player)

    progress = blanks_left_percent(game)

    if progress < 0.5:
        if others_toe(game, player, opponent):
            return 1

        # close in on opponent
        w, h = game.get_player_location(opponent)
        y, x = game.get_player_location(player)
        return float(-(h - y)**2 - (w - x)**2)
    else:
        # tread on his toes
        multiplier = 1.0

        if others_toe(game, player, opponent):
            multiplier = 2.0

        # if a toe is hit, we put some positive weight on players moves
        own_moves = len(game.get_legal_moves(player))
        opp_moves = len(game.get_legal_moves(opponent))

        return float(own_moves - opp_moves) * multiplier
Ejemplo n.º 9
0
 def max_value(self, board: Board, depth):
     """
     function MAX-VALUE(state) returns a utility value
     if TERMINAL-TEST(state) then return UTILITY(state)
     v <- -infinity
     for each a in ACTIONS(state) do
         v <- MAX(v, MIN-VALUE(RESULT(state, a)))
     return v
     """
     if self.time_left() < self.TIMER_THRESHOLD:
         raise SearchTimeout()
     maxi = self
     utility = board.utility(maxi)
     if utility != 0:
         return utility
     if depth <= 0:
         return self.score(board, maxi)
     max_value = -math.inf
     for move in board.get_legal_moves():
         max_value = max(
             max_value, self.min_value(board.forecast_move(move),
                                       depth - 1))
     return max_value
    def alphabeta(self,
                  game: Board, depth, alpha=float("-inf"), beta=float("inf")) -> tuple:
        """Implement depth-limited minimax search with alpha-beta pruning as
        described in the lectures.

        This should be a modified version of ALPHA-BETA-SEARCH in the AIMA text
        https://github.com/aimacode/aima-pseudocode/blob/master/md/Alpha-Beta-Search.md

        **********************************************************************
            You MAY add additional methods to this class, or define helper
                 functions to implement the required functionality.
        **********************************************************************

        Parameters
        ----------
        game : isolation.Board
            An instance of the Isolation game `Board` class representing the
            current game state

        depth : int
            Depth is an integer representing the maximum number of plies to
            search in the game tree before aborting

        alpha : float
            Alpha limits the lower bound of search on minimizing layers

        beta : float
            Beta limits the upper bound of search on maximizing layers

        Returns
        -------
        (int, int)
            The board coordinates of the best move found in the current search;
            (-1, -1) if there are no legal moves

        Notes
        -----
            (1) You MUST use the `self.score()` method for board evaluation
                to pass the project tests; you cannot call any other evaluation
                function directly.

            (2) If you use any helper functions (e.g., as shown in the AIMA
                pseudocode) then you must copy the timer check into the top of
                each helper function or else your agent will timeout during
                testing.
        """
        if self.time_left() < self.TIMER_THRESHOLD:
            raise SearchTimeout()

        # TODO: finish this function!

        move = NEG_INFINITY
        alpha_move = (alpha, NEGATIVE_MOVE)
        for next_move in game.get_legal_moves(game.active_player):
            move = max(move,
                       self.min_value(game.forecast_move(next_move),
                                      depth - 1,
                                      alpha_move[0],
                                      beta))
            if move == alpha_move[0]:
                continue
            alpha_move = max(alpha_move, (move, next_move))
        return alpha_move[1]
Ejemplo n.º 11
0
def custom_score(game: Board, player):
    """Calculate the heuristic value of a game state from the point of view
    of the given player.

    This should be the best heuristic function for your project submission.

    Note: this function should be called from within a Player instance as
    `self.score()` -- you should not need to call this function directly.

    Parameters
    ----------
    game : `isolation.Board`
        An instance of `isolation.Board` encoding the current state of the
        game (e.g., player locations and blocked cells).

    player : object
        A player instance in the current game (i.e., an object corresponding to
        one of the player objects `game.__player_1__` or `game.__player_2__`.)

    Returns
    -------
    float
        The heuristic value of the current game state to the specified player.

    results
    =======
    2 forecasts:
    ------------
     Match #   Opponent     AB_Custom
                            Won | Lost
        1       Random      10  |   0
        2       MM_Open      7  |   3
        3      MM_Center     8  |   2
        4     MM_Improved   10  |   0
        5       AB_Open      4  |   6
        6      AB_Center     4  |   6
        7     AB_Improved    4  |   6
    --------------------------------------------------------------------------
               Win Rate:      67.1%

    1 forecast:
    -----------
     Match #   Opponent     AB_Custom
                            Won | Lost
        1       Random      10  |   0
        2       MM_Open      6  |   4
        3      MM_Center     9  |   1
        4     MM_Improved    8  |   2
        5       AB_Open      4  |   6
        6      AB_Center     7  |   3
        7     AB_Improved    5  |   5
    --------------------------------------------------------------------------
               Win Rate:      70.0%

    2 forecasts but only in potential endgame (last 15 rounds):
    -----------------------------------------------------------
    first try:
     Match #   Opponent     AB_Custom
                            Won | Lost
        1       Random       9  |   1
        2       MM_Open      6  |   4
        3      MM_Center     9  |   1
        4     MM_Improved    6  |   4
        5       AB_Open      5  |   5
        6      AB_Center     3  |   7
        7     AB_Improved    5  |   5
    --------------------------------------------------------------------------
               Win Rate:      61.4%
    second try:
     Match #   Opponent     AB_Custom
                            Won | Lost
        1       Random      10  |   0
        2       MM_Open      9  |   1
        3      MM_Center     8  |   2
        4     MM_Improved    7  |   3
        5       AB_Open      6  |   4
        6      AB_Center     6  |   4
        7     AB_Improved    4  |   6
    --------------------------------------------------------------------------
               Win Rate:      71.4%

    VS AB_Improved:
    ===============
    2 forecasts but before potential endgame (except 15 rounds):
    ----------------------------------------------------------
     Match #   Opponent     AB_Custom
                            Won | Lost
        1     AB_Improved   22  |  18
    --------------------------------------------------------------------------
               Win Rate:      55.0%

    """
    if game.is_loser(player):
        return float("-inf")

    if game.is_winner(player):
        return float("inf")

    opponent = game.get_opponent(player)

    own_moves = []
    opp_moves = []

    if len(game.get_blank_spaces()) <= 25:
        # 2 forecasts
        for move_player in game.get_legal_moves(player):
            moves_opponent = game.forecast_move(move_player).get_legal_moves(
                opponent)
            for move_opponent in moves_opponent:
                ply = game.forecast_move(move_opponent)
                own_moves += ply.get_legal_moves(player)
                opp_moves += ply.get_legal_moves(opponent)
    else:
        own_moves = game.get_legal_moves(player)
        opp_moves = game.get_legal_moves(opponent)

    return float(len(own_moves) - len(opp_moves))