def lap(k,data,style_data,dim,outfile): ''' 1. Construct your k nearest neighbors adjacency matrix 2. Use Heat Equation exp -{||x_i-x_j||^2/4t} ''' adjacency = knn(data,data.shape[1]) heat = 1.0 print "--- Seeting Weights on Adjacency Matrix ---\n" heat_matrix = set_weights(adjacency,k,heat) print "--- Creating Laplacian Matrix ---\n" laplacian, weight = get_laplacian(heat_matrix) print "--- Eigendecomp -> Points ---\n" points = eigen_decomp( laplacian,weight,dim) print "--- Plotting Points ---\n" plot_points(points,style_data, outfile)
def lle(k,data,style_data,src,outfile,dim): '''1. Start with knn ''' n = data.shape[1] # k+1 because nearest neighbor includes self matrix = knn(data,k+1) print "--- Seeting Weights on Adjacency Matrix ---\n" # weighted is a 500x500 matrix weighted = set_weights(matrix,data,k,dim,src,n) print "--- Embedding Coordinates ---\n" # matrix is nxn matrix = embedd_y(weighted,n) print "--- Eigendecomp -> Points ---\n" # return a 500x2 points points = get_points(matrix,dim,src) print "--- Plotting Points ---\n" plot_points(np.transpose(points),style_data,outfile)