def _optimize(self, A_I, b_I):
        h, w = self._I_32F.shape[:2]
        A_L = laplacianMatrix((h, w), num_elements=1)
        A_L = A_L

        A = A_L + A_I
        b = b_I

        N = amg_solver.solve(A, b).reshape(-1, 3)
        computeNz(N)
        #N = normalizeVectors(N)
        N_32F = N.reshape(h, w, 3)

        self._N_32F = N_32F
Ejemplo n.º 2
0
    def _computeInitialNormal(self):
        A_8U = self._A_8U
        self._N0_32F = np.float64(silhouetteNormal(A_8U))

        return

        h, w = A_8U.shape
        A_L = laplacianMatrix((h, w), num_elements=3)
        A_sil, b_sil = silhouetteConstraints(A_8U, is_flat=True)

        A = A_L + A_sil
        b = b_sil

        N = amg_solver.solve(A, b).reshape(-1, 3)
        computeNz(N)
        N = normalizeVectors(N)
        N_32F = N.reshape(h, w, 3)
        self._N0_32F = N_32F
Ejemplo n.º 3
0
    def _computeInitialNormal(self):
        A_8U = self._A_8U
        self._N0_32F = np.float64(silhouetteNormal(A_8U))

        return

        h, w = A_8U.shape
        A_L = laplacianMatrix((h, w), num_elements=3)
        A_sil, b_sil = silhouetteConstraints(A_8U, is_flat=True)

        A = A_L + A_sil
        b = b_sil

        N = amg_solver.solve(A, b).reshape(-1, 3)
        computeNz(N)
        N = normalizeVectors(N)
        N_32F = N.reshape(h, w, 3)
        self._N0_32F = N_32F
    def _computeLumoNormal(self):
        A_8U = self._A_8U

        if A_8U is None:
            return

        h, w = A_8U.shape[:2]
        A_c, b_c = amg_constraints.silhouetteConstraints(A_8U)

        A_L = amg_constraints.laplacianMatrix((h, w))
        A = 3.0 * A_c + A_L
        b = 3.0 * b_c

        N_32F = amg_solver.solve(A, b).reshape(h, w, 3)
        N_32F = computeNz(N_32F.reshape(-1, 3)).reshape(h, w, 3)
        N_32F = normalizeImage(N_32F)
        self._N_lumo = np.array(N_32F)
Ejemplo n.º 5
0
    def _computeLumoNormal(self):
        A_8U = self._A_8U

        if A_8U is None:
            return

        h, w = A_8U.shape[:2]
        A_c, b_c = amg_constraints.silhouetteConstraints(A_8U)

        A_L = amg_constraints.laplacianMatrix((h, w))
        A = 3.0 * A_c + A_L
        b = 3.0 * b_c

        N_32F = amg_solver.solve(A, b).reshape(h, w, 3)
        N_32F = computeNz(N_32F.reshape(-1, 3)).reshape(h, w, 3)
        N_32F = normalizeImage(N_32F)
        self._N_lumo = np.array(N_32F)
Ejemplo n.º 6
0
    def _runImp(self):
        normal_data = loadNormal(self._data_file)

        if normal_data is None:
            return

        N0_32F, A_8U = normal_data

        h, w = A_8U.shape[:2]
        A_c, b_c = amg_constraints.silhouetteConstraints(A_8U, is_flat=True)

        A_L = amg_constraints.laplacianMatrix((h, w), num_elements=3)
        A = A_c + A_L
        b = b_c

        N = amg_solver.solve(A, b).reshape(-1, 3)
        N = computeNz(N)
        N = normalizeVectors(N)
        N_32F = N.reshape(h, w, 3)

        file_path = self.resultFile(self._data_file_name)
        saveNormal(file_path, N_32F, A_8U)
Ejemplo n.º 7
0
    def _runImp(self):
        normal_data = loadNormal(self._data_file)

        if normal_data is None:
            return

        N0_32F, A_8U = normal_data

        h, w = A_8U.shape[:2]
        A_c, b_c = amg_constraints.silhouetteConstraints(A_8U, is_flat=True)

        A_L = amg_constraints.laplacianMatrix((h, w), num_elements=3)
        A = A_c + A_L
        b = b_c

        N = amg_solver.solve(A, b).reshape(-1, 3)
        N = computeNz(N)
        N = normalizeVectors(N)
        N_32F = N.reshape(h, w, 3)

        file_path = self.resultFile(self._data_file_name)
        saveNormal(file_path, N_32F, A_8U)
    def _computeDetailNormal(self, N0_32F):
        h, w = N0_32F.shape[:2]
        W_32F = np.zeros((h, w))

#         sigma_d = 2.0 * np.max(N0_32F[:, :, 2])
#         W_32F = 1.0 - np.exp( - (N0_32F[:, :, 2] ** 2) / (sigma_d ** 2))

        W_32F = 1.0 - N0_32F[:, :, 2]
        W_32F *= 1.0 / np.max(W_32F)
        W_32F = W_32F ** 1.5

        A_c, b_c = amg_constraints.normalConstraints(W_32F, N0_32F)

        A_L = amg_constraints.laplacianMatrix((h, w))

        lambda_d = 2.0
        A = A_c + lambda_d * A_L
        b = b_c

        N_32F = amg_solver.solve(A, b).reshape(h, w, 3)
        N_32F = computeNz(N_32F.reshape(-1, 3)).reshape(h, w, 3)
        N_32F = normalizeImage(N_32F)
        return N_32F
Ejemplo n.º 9
0
    def _computeDetailNormal(self, N0_32F):
        h, w = N0_32F.shape[:2]
        W_32F = np.zeros((h, w))

        #         sigma_d = 2.0 * np.max(N0_32F[:, :, 2])
        #         W_32F = 1.0 - np.exp( - (N0_32F[:, :, 2] ** 2) / (sigma_d ** 2))

        W_32F = 1.0 - N0_32F[:, :, 2]
        W_32F *= 1.0 / np.max(W_32F)
        W_32F = W_32F**1.5

        A_c, b_c = amg_constraints.normalConstraints(W_32F, N0_32F)

        A_L = amg_constraints.laplacianMatrix((h, w))

        lambda_d = 2.0
        A = A_c + lambda_d * A_L
        b = b_c

        N_32F = amg_solver.solve(A, b).reshape(h, w, 3)
        N_32F = computeNz(N_32F.reshape(-1, 3)).reshape(h, w, 3)
        N_32F = normalizeImage(N_32F)
        return N_32F
 def func(N_32F):
     h, w = N_32F.shape[:2]
     N_new = computeNz(N_32F.reshape(-1, 3)).reshape(h, w, 3)
     return N_new
 def func(N_32F):
     h, w = N_32F.shape[:2]
     N_new = computeNz(N_32F.reshape(-1, 3)).reshape(h, w, 3)
     return N_new