Ejemplo n.º 1
0
    def get_reward(self):
        """
        Get reward based on current state

        :return: Reward array
        """
        # Goal proximity.
        rew = ivy.exp(-0.5 * ivy.reduce_sum((self.xy - self.goal_xy)**2, -1))
        # Urchins proximity.
        rew = rew * ivy.reduce_prod(
            1 - ivy.exp(-30 * ivy.reduce_sum(
                (self.xy - self.urchin_xys)**2, -1)), -1)
        return ivy.reshape(rew, (1, ))
Ejemplo n.º 2
0
    def get_reward(self):
        """
        Get reward based on current state

        :return: Reward array
        """
        # Goal proximity.
        return ivy.reshape(ivy.exp(-5 * ((self.x - self.goal_x) ** 2)), (1,))
Ejemplo n.º 3
0
    def get_reward(self):
        """
        Get reward based on current state

        :return: Reward array
        """
        # Center proximity.
        rew = ivy.exp(-1 * (self.x**2))
        # Pole verticality.
        rew = rew * (ivy.cos(self.angle) + 1) / 2
        return ivy.reshape(rew[0], (1, ))
Ejemplo n.º 4
0
def test_exp(x, dtype_str, tensor_fn, dev_str, call):
    # smoke test
    x = tensor_fn(x, dtype_str, dev_str)
    ret = ivy.exp(x)
    # type test
    assert ivy.is_array(ret)
    # cardinality test
    assert ret.shape == x.shape
    # value test
    assert np.allclose(call(ivy.exp, x), ivy.numpy.exp(ivy.to_numpy(x)))
    # compilation test
    helpers.assert_compilable(ivy.exp)
Ejemplo n.º 5
0
def sampled_volume_density_to_occupancy_probability(density,
                                                    inter_sample_distance):
    """
    Compute probability of occupancy, given sampled volume densities and their associated inter-sample distances

    :param density: The sampled density values *[batch_shape]*
    :type density: array
    :param inter_sample_distance: The inter-sample distances *[batch_shape]*
    :type inter_sample_distance: array
    :return: The occupancy probabilities *[batch_shape]*
    """
    return 1 - ivy.exp(-density * inter_sample_distance)
Ejemplo n.º 6
0
    def _addressing(self, k, beta, g, s, gamma, prev_M, prev_w):

        # Sec 3.3.1 Focusing by Content

        # Cosine Similarity

        k = ivy.expand_dims(k, axis=2)
        inner_product = ivy.matmul(prev_M, k)
        k_norm = ivy.reduce_sum(k**2, axis=1, keepdims=True)**0.5
        M_norm = ivy.reduce_sum(prev_M**2, axis=2, keepdims=True)**0.5
        norm_product = M_norm * k_norm
        K = ivy.squeeze(inner_product / (norm_product + 1e-8))  # eq (6)

        # Calculating w^c

        K_amplified = ivy.exp(ivy.expand_dims(beta, axis=1) * K)
        w_c = K_amplified / ivy.reduce_sum(K_amplified, axis=1,
                                           keepdims=True)  # eq (5)

        if self._addressing_mode == 'content':  # Only focus on content
            return w_c

        # Sec 3.3.2 Focusing by Location

        g = ivy.expand_dims(g, axis=1)
        w_g = g * w_c + (1 - g) * prev_w  # eq (7)

        s = ivy.concatenate([
            s[:, :self._shift_range + 1],
            ivy.zeros(
                [s.shape[0], self._memory_size -
                 (self._shift_range * 2 + 1)]), s[:, -self._shift_range:]
        ],
                            axis=1)
        t = ivy.concatenate([ivy.flip(s, axis=[1]),
                             ivy.flip(s, axis=[1])],
                            axis=1)
        s_matrix = ivy.stack([
            t[:, self._memory_size - i - 1:self._memory_size * 2 - i - 1]
            for i in range(self._memory_size)
        ],
                             axis=1)
        w_ = ivy.reduce_sum(ivy.expand_dims(w_g, axis=1) * s_matrix,
                            axis=2)  # eq (8)
        w_sharpen = w_**ivy.expand_dims(gamma, axis=1)
        w = w_sharpen / ivy.reduce_sum(w_sharpen, axis=1,
                                       keepdims=True)  # eq (9)

        return w
Ejemplo n.º 7
0
    def get_reward(self):
        """
        Get reward based on current state

        :return: Reward array
        """
        # Goal proximity.
        x = ivy.reduce_sum(ivy.cos(self.angles), -1)
        y = ivy.reduce_sum(ivy.sin(self.angles), -1)
        xy = ivy.concatenate([ivy.expand_dims(x, 0),
                              ivy.expand_dims(y, 0)],
                             axis=0)
        rew = ivy.reshape(
            ivy.exp(-1 * ivy.reduce_sum((xy - self.goal_xy)**2, -1)), (-1, ))
        return ivy.reduce_mean(rew, axis=0, keepdims=True)