Ejemplo n.º 1
0
def create(input_file, output_file):

    in_nii = labels.read_nifti_file(input_file, 'Label file does not exist')
    in_array = in_nii.get_data()

    out_array, n_out_array = ndimage.label(in_array)

    nibabel.save(nibabel.Nifti1Image(out_array, in_nii.get_affine()),
                 output_file)
Ejemplo n.º 2
0
def main():

    # Parsing Arguments

    usage = "usage: %prog [options] arg1 arg2"

    parser = argparse.ArgumentParser(prog='iw_labels_otsu')

    parser.add_argument("in_labels", help="Filename of input labels")
    parser.add_argument("in_image", help="Filename of input labels")
    parser.add_argument("otsu_labels", help="Filename of output NII otsu mask")

    parser.add_argument("-v", "--verbose", help="Verbose flag", action="store_true", default=False)
    inArgs = parser.parse_args()

    in_label_nii = labels.read_nifti_file(inArgs.in_labels, 'Label file does not exist')
    in_label_array = in_label_nii.get_data()

    in_image_nii = labels.read_nifti_file(inArgs.in_image, 'Label file does not exist')
    in_image_array = in_image_nii.get_data()

    out_array_low = np.zeros(in_label_array.shape)
    out_array_high = np.zeros(in_label_array.shape)

    for ii in xrange(1, 4):
        ii_label_array = in_label_array[:, :, :, ii]
        ii_image_array = in_image_array[:, :, :, ii]
        ii_labels = labels.get_labels(None, ii_label_array)

        for jj in ii_labels:
            print ii, jj
            jj_mask = ndimage.binary_dilation(ii_label_array == jj)
            jj_image = jj_mask * ii_image_array

            val = filters.threshold_otsu(jj_image)
            jj_image_high = jj * (jj_image >= val) * jj_mask
            jj_image_low =  jj * (jj_image < val ) * jj_mask

            out_array_low[:,:,:,ii] += jj_image_low
            out_array_high[:,:,:,ii] += jj_image_high

    nb.save(nb.Nifti1Image(out_array_low, in_image_nii.get_affine()), 'low.' + inArgs.otsu_labels)
    nb.save(nb.Nifti1Image(out_array_high, in_image_nii.get_affine()), 'high.' + inArgs.otsu_labels)
Ejemplo n.º 3
0
def keep(in_nii, keep_labels, keep_csv_filename, out_filename):

    in_label_nii = labels.read_nifti_file(in_nii, 'Label file does not exist')
    in_label_array = in_label_nii.get_data()

    if len(keep_csv_filename):
        csv_keep_labels = labels.read_labels_from_csv(keep_csv_filename)
    else:
        csv_keep_labels = []

    all_labels = set(labels.get_labels(None, in_label_array))
    keep_labels = set(
        labels.get_labels(keep_labels + csv_keep_labels, in_label_array))
    remove_labels = sorted(list(all_labels.symmetric_difference(keep_labels)))

    out_label_array = in_label_array

    for ii in remove_labels:
        mask = in_label_array == ii
        out_label_array[mask] = 0

    nb.save(nb.Nifti1Image(out_label_array, None, in_label_nii.get_header()),
            out_filename)
Ejemplo n.º 4
0
                        default=[])
    parser.add_argument("--csv",
                        help="CSV filename containing labels to remove",
                        default=[])

    parser.add_argument("-v",
                        "--verbose",
                        help="Verbose flag",
                        action="store_true",
                        default=False)

    inArgs = parser.parse_args()

    #

    in_label_nii = labels.read_nifti_file(inArgs.in_nii,
                                          'Label file does not exist')
    in_label_array = in_label_nii.get_data()

    if inArgs.out_nii == None:
        out_filename = inArgs.in_nii
    else:
        out_filename = inArgs.out_nii

    if len(inArgs.csv):
        csv_remove_labels = labels.read_labels_from_csv(inArgs.csv)
    else:
        csv_remove_labels = []

    remove_labels = labels.get_labels(inArgs.remove + csv_remove_labels,
                                      in_label_array)
Ejemplo n.º 5
0
def main():
    ## Parsing Arguments
    #
    #

    usage = "usage: %prog [options] arg1 arg2"

    parser = argparse.ArgumentParser(prog='iw_compare_images')

    parser.add_argument("in_label_nii_filename", help="Label NIFTI filename ")
    parser.add_argument("in_label2_nii_filename", help="Label NIFTI filename ")

    parser.add_argument(
        "--out",
        help="Filename of CSV output file containing label stats",
        default=None)
    parser.add_argument("--stats",
                        help="Stats to report",
                        type=str,
                        nargs="*",
                        default=('volume', 'com_x', 'com_y', 'com_z', 'com_in',
                                 'bb_dx', 'bb_dy', 'bb_dz', 'bb_dmin',
                                 'bb_volume', 'fill_factor'))

    parser.add_argument("--labels",
                        help="Label indices to analyze",
                        type=int,
                        nargs="*",
                        default=None)
    parser.add_argument("--sort",
                        help="Label indices to analyze",
                        type=str,
                        default='label')

    parser.add_argument("--limits_volume",
                        help="Report labels within these limits",
                        type=int,
                        nargs=2,
                        default=[0, numpy.inf])
    parser.add_argument("--limits_fill_factor",
                        help="Report labels within these limits",
                        type=int,
                        nargs=2,
                        default=[0, 1.0])
    parser.add_argument("--limits_bb_volume",
                        help="Report labels within these limits",
                        type=int,
                        nargs=2,
                        default=[0, numpy.inf])

    parser.add_argument("--limits_background",
                        help="Report background label (i.e label=0)",
                        action="store_true",
                        default=False)

    parser.add_argument("-d",
                        "--display",
                        help="Display Results",
                        action="store_true",
                        default=False)
    parser.add_argument("-v",
                        "--verbose",
                        help="Verbose flag",
                        action="store_true",
                        default=False)
    parser.add_argument("--verbose_nlines",
                        help="Number of lines to display (default=10)",
                        default=10)

    inArgs = parser.parse_args()

    label1_nii = labels.read_nifti_file(inArgs.in_label_nii_filename,
                                        'Label file does not exist')
    label1_array = label1_nii.get_data()

    label2_nii = labels.read_nifti_file(inArgs.in_label2_nii_filename,
                                        'Label file does not exist')
    label2_array = label2_nii.get_data()

    label1_list = labels.get_labels(inArgs.labels, label1_array,
                                    inArgs.limits_background)
    label2_list = labels.get_labels(None, label2_array,
                                    inArgs.limits_background)

    label1_dict = dict(zip(label1_list, range(0, len(label1_list))))
    label2_dict = dict(zip(label2_list, range(0, len(label2_list))))

    print label1_dict
    print label2_dict

    overlap_matrix = numpy.zeros([len(label1_list), len(label2_list)])

    for ii in label1_list:
        mask1 = 1. * (label1_array == ii)

        ii_label2_list = numpy.unique(mask1 * label2_array)
        ii_label2_list = ii_label2_list[ii_label2_list > 0]

        for jj in ii_label2_list:

            mask2 = 1. * (label2_array == jj)
            overlap_matrix[label1_dict[ii],
                           label2_dict[jj]] = numpy.sum(mask1 * mask2)

            print ii, label1_dict[ii], jj, label2_dict[jj], numpy.sum(
                mask1), numpy.sum(mask2), overlap_matrix[label1_dict[ii],
                                                         label2_dict[jj]]

    overlap_matrix.tofile('overlap.csv', sep=',', format='%10.5f')
Ejemplo n.º 6
0
def measure(in_label_nii_filename, labels, background, stats, out_filename, limits_volume_voxels=[0, numpy.inf], 
            limits_bb_volume_voxels=[0, numpy.inf], limits_fill_factor=[0,1], sort='volume', 
            verbose=False, verbose_nlines=20):

    label_nii = iw_labels.read_nifti_file( in_label_nii_filename, 'iw_label_stats.py: Label file does not exist. ')

    single_voxel_volume_mm3 = query_voxel_volume_mm3( label_nii )

    label_array = label_nii.get_data()

    label_list = iw_labels.get_labels(labels, label_array, background)

    df_stats = pd.DataFrame(columns=(
    'label', 'volume_voxels', 'volume_mm3', 'com_x', 'com_y', 'com_z', 'com_t', 'com_in', 'bb_dx', 'bb_dy', 'bb_dz', 'bb_dt', 'bb_dmin', 'bb_volume_voxels',
    'fill_factor'))

    stats_list = ['label', ] + list(stats)

    if verbose:
        jj = 0
        pd.set_option('expand_frame_repr', False)

    for ii in label_list:

        # Create logical mask

        mask = (label_array == ii)
        ndim = query_ndimensions(mask)

        # Calculate Volume
        label_volume_voxels = int(numpy.sum(mask))
        label_volume_mm3    = single_voxel_volume_mm3 * label_volume_voxels

        if check_limits(label_volume_voxels, limits_volume_voxels):

            bb_dx, bb_dy, bb_dz, bb_dt, bb_dmin, bb_volume_voxels = calculate_bounding_box(mask)

            if check_limits(bb_volume_voxels, limits_bb_volume_voxels):

                label_x_com, label_y_com, label_z_com, label_t_com = calculate_center_of_mass(mask)

                if ndim == 4:
                    label_com_in = mask[label_x_com, label_y_com, label_z_com, label_t_com]
                else:
                    label_com_in = mask[label_x_com, label_y_com, label_z_com]

                fill_factor = label_volume_voxels / bb_volume_voxels

                if check_limits(fill_factor, limits_fill_factor):

                    label_stats = [ii, label_volume_voxels, label_volume_mm3, label_x_com, label_y_com, label_z_com, label_t_com, label_com_in, bb_dx, bb_dy,
                                   bb_dz, bb_dt, bb_dmin, bb_volume_voxels, fill_factor]

                    df_stats.loc[len(df_stats)] = label_stats

                    if verbose:
                        if jj == (verbose_nlines - 1):
                            print
                            df_verbose = df_stats.tail(verbose_nlines)
                            df_verbose = df_verbose[stats_list]
                            print df_verbose.to_string(
                                formatters={'volume_voxels': '{:,.0f}'.format, 'volume_mm3': '{:,.3f}'.format,
                                            'com_x': '{:,.0f}'.format,
                                            'com_y': '{:,.0f}'.format, 'com_z': '{:,.0f}'.format,
                                            'com_t': '{:,.0f}'.format,
                                            'com_in': '{:,.0f}'.format, 'bb_dx': '{:,.0f}'.format,
                                            'bb_dy': '{:,.0f}'.format, 'bb_dz': '{:,.0f}'.format, 'bb_dt': '{:,.0f}'.format,
                                            'bb_volume_voxels': '{:,.0f}'.format,
                                            'fill_factor': '{:,.3f}'.format 
                                            }
                                )

                            jj = 0
                        else:
                            jj += 1

    df_sorted = df_stats.sort_values([sort], ascending=[1]).reset_index(drop=True)

    if verbose:
        print
        print df_sorted[stats_list]
        print

    if not out_filename == None:
        df_sorted[stats_list].to_csv(out_filename, index=False)
Ejemplo n.º 7
0
def compare_images(label_nii_filename,
                   image1_nii_filename,
                   image2_nii_filename,
                   requested_labels,
                   min_volume,
                   verbose_flag=False):

    import iw_labels as labels

    # Load arrays

    label_nii = labels.read_nifti_file(label_nii_filename,
                                       'Label file does not exist')
    image1_nii = labels.read_nifti_file(image1_nii_filename,
                                        'Image file does not exist')
    image2_nii = labels.read_nifti_file(image2_nii_filename,
                                        'Image file does not exist')

    # System Checks to verify that the Array Size and Dimensions are compatible

    image1_array = image1_nii.get_data()
    image2_array = image2_nii.get_data()
    label_array = label_nii.get_data()

    labels.image_shape_check(image1_array)
    labels.image_shape_check(image2_array)

    if not image1_array.shape == image2_array.shape:
        sys.exit('Image arrays must have the same shape')

    if not len(label_array.shape) == 3:
        sys.exit('Only supports 3D label arrays')

    if not image1_array.shape[0:len(label_array.shape)] == label_array.shape:
        sys.exit(
            'Image array and label array do not have the same voxel dimensions'
        )

    # Find a set of acceptable labels

    label_list = labels.get_labels(requested_labels, label_array)

    # Permute array or expand so desired stats is along first dimension

    image1_array, nVolumes = labels.permute_image_array(image1_array)
    image2_array, nVolumes = labels.permute_image_array(image2_array)

    # Gather stats

    if inArgs.verbose:
        jj = 0
        pd.set_option('expand_frame_repr', False)

    df_stats = pd.DataFrame(columns=('label', 'time_index', 'volume',
                                     'boundary_mean1', 'boundary_std1',
                                     'mean1', 'std1', 'boundary_mean2',
                                     'boundary_std2', 'mean2', 'std2', 'scale',
                                     'p_rel_scaled'))

    for ii, ii_label in enumerate(label_list):

        mask = label_array == ii_label
        boundary_mask = binary_dilation(mask, structure=np.ones((3, 3, 3)))
        boundary_mask -= mask

        label_volume = np.sum(mask[:])

        for time in range(0, nVolumes):

            # Calculate signal intensity of boundary pixels

            boundary_image1_mean, boundary_image1_std, boundary_image1_min, boundary_image1_max = labels.individual_image_stats(
                image1_array[time][boundary_mask])
            boundary_image2_mean, boundary_image2_std, boundary_image2_min, boundary_image2_max = labels.individual_image_stats(
                image2_array[time][boundary_mask])

            scale = boundary_image1_mean / boundary_image2_mean

            # Scale image to match boundary pixels

            image1_mean, image1_std, image1_min, image1_max = labels.individual_image_stats(
                image1_array[time][mask])
            image2_mean, image2_std, image2_min, image2_max = labels.individual_image_stats(
                scale * image2_array[time][mask])

            # Calculate paired t-test from region of interest across two images
            t_rel, p_rel_scaled = stats.ttest_rel(
                image1_array[time][mask], scale * image2_array[time][mask])

            # Save stats
            image_array_stats = [
                ii_label, time, label_volume, boundary_image1_mean,
                boundary_image1_std, image1_mean, image1_std,
                boundary_image2_mean, boundary_image2_std, image2_mean,
                image2_std, scale, -np.log(p_rel_scaled)
            ]

            df_stats.loc[len(df_stats)] = image_array_stats

            if inArgs.verbose:
                if jj == (inArgs.verbose_nlines - 1):
                    print
                    df_verbose = df_stats.tail(inArgs.verbose_nlines)
                    print df_verbose.to_string(
                        formatters={
                            'label': '{:,.0f}'.format,
                            'volume': '{:,.0f}'.format,
                            'time_index': '{:,.0f}'.format
                        })
                    jj = 0
                else:
                    jj += 1

    if inArgs.verbose:
        print
        print df_stats
        print

    return df_stats