Ejemplo n.º 1
0
    def test_mnist_image(self):
        image_data = [
            0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
            0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
            0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 44.25, 122.75, 126.5, 70.5,
            0.0, 0.0, 0.0, 0.0, 0.0, 6.5, 1.5, 0.0, 16.75, 203.75, 249.5,
            252.0, 252.0, 246.5, 214.75, 37.5, 0.0, 0.0, 0.0, 25.25, 6.0, 0.0,
            7.0, 123.5, 166.75, 162.25, 201.25, 252.5, 181.5, 9.25, 0.0, 0.0,
            0.0, 0.0, 0.0, 0.0, 0.0, 30.0, 167.5, 248.75, 240.5, 129.0, 27.5,
            0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 212.75, 252.5, 208.75,
            26.5, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 34.25,
            71.5, 214.75, 202.0, 31.5, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
            0.0, 0.0, 0.0, 13.25, 169.5, 167.25, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
            0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 148.25, 190.5, 0.0, 0.0, 0.0, 0.0,
            0.0, 0.0, 12.75, 210.0, 159.5, 65.75, 167.5, 209.75, 252.5, 78.25,
            0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 3.25, 168.0, 252.5, 251.25, 238.25,
            163.75, 58.75, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 15.75,
            106.5, 60.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
            0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0
        ]

        model = Model(layers=[
            Image(image_data=image_data, maximum=256),
            CNN(reLU(), (3, 3)),
            Dense(reLU(), (3, 1)),
            Category([1, 2, 3]),
        ])
        model.compile(build=True)
        model.jacobian()
        weights = model.weights()
        derivatives = [w.derivative() for w in weights]
        pass
Ejemplo n.º 2
0
cat = model.predict()
print(cat)
prob = model.probability()
print(prob)

n_weights = model.weight_count()

gradient = 0
i = 0
while gradient == 0 and i < n_weights:
    gradient = finite_difference(model, i, epsilon=0.01)
    i += 1
print(gradient)

weights = model.weights()
print(weights)

weight_counts = model.weight_counts()
print(weight_counts)

n_weights = model.weight_count()

new_weights = [-i - 1 for i in range(n_weights)]
model.set_weights(new_weights)

weights = model.weights()
print(weights)

pass