Ejemplo n.º 1
0
def test_find_with_extension():
    root = tempfile.mkdtemp()

    files = [[root, 'file1.txt'],
             [root, 'sub1', 'file2.txt'],
             [root, 'sub1', 'sub2', 'file3.txt'],
             [root, 'sub1', 'sub2', 'sub3', 'file4.txt']]

    files = [os.sep.join(_) for _ in files]
    badfiles = [_.replace('.txt', '.csv') for _ in files]

    # Create all the necessary directories
    util.smkdirs(os.path.dirname(files[-1]))

    # Create the dummy files
    for fname in files + badfiles:
        with open(fname, 'w') as _:
            pass

    def __test(level, sort):
        results = util.find_with_extension(root, 'txt', depth=level, sort=sort)

        eq_(sorted(results), sorted(files[:level]))

    for level in [1, 2, 3, 4]:
        for sort in [False, True]:
            yield __test, level, sort

    # Cleanup
    for fname, badfname in zip(files[::-1], badfiles[::-1]):
        os.remove(fname)
        os.remove(badfname)
        os.rmdir(os.path.dirname(fname))
Ejemplo n.º 2
0
def root_and_files():

    root = tempfile.mkdtemp()

    files = [[root, 'file1.txt'], [root, 'sub1', 'file2.txt'],
             [root, 'sub1', 'sub2', 'file3.txt'],
             [root, 'sub1', 'sub2', 'sub3', 'file4.txt']]

    files = [os.sep.join(_) for _ in files]
    badfiles = [_.replace('.txt', '.csv') for _ in files]

    # Create all the necessary directories
    util.smkdirs(os.path.dirname(files[-1]))

    # Create the dummy files
    for fname in files + badfiles:
        with open(fname, 'w'):
            pass

    yield root, files

    for fname, badfname in zip(files[::-1], badfiles[::-1]):
        os.remove(fname)
        os.remove(badfname)
        os.rmdir(os.path.dirname(fname))
Ejemplo n.º 3
0
def root_and_files():

    root = tempfile.mkdtemp()

    files = [[root, 'file1.txt'],
             [root, 'sub1', 'file2.txt'],
             [root, 'sub1', 'sub2', 'file3.txt'],
             [root, 'sub1', 'sub2', 'sub3', 'file4.txt']]

    files = [os.sep.join(_) for _ in files]
    badfiles = [_.replace('.txt', '.csv') for _ in files]

    # Create all the necessary directories
    util.smkdirs(os.path.dirname(files[-1]))

    # Create the dummy files
    for fname in files + badfiles:
        with open(fname, 'w'):
            pass

    yield root, files

    for fname, badfname in zip(files[::-1], badfiles[::-1]):
        os.remove(fname)
        os.remove(badfname)
        os.rmdir(os.path.dirname(fname))
Ejemplo n.º 4
0
def make_muda(presets):
    '''Construct a MUDA pitch shifter'''

    drc = muda.deformers.DynamicRangeCompression(preset=presets)

    smkdirs(OUTPUT_PATH)
    with open(os.path.join(OUTPUT_PATH, 'muda_drc.pkl'), 'wb') as fd:
        pickle.dump(drc, fd)

    return drc
Ejemplo n.º 5
0
def make_muda(stretch, n_stretch):
    '''Construct a MUDA time stretcher'''

    shifter = muda.deformers.LogspaceTimeStretch(n_samples=n_stretch, lower=-stretch, upper=stretch)

    smkdirs(OUTPUT_PATH)
    with open(os.path.join(OUTPUT_PATH, 'muda.pkl'), 'wb') as fd:
        pickle.dump(shifter, fd)

    return shifter
Ejemplo n.º 6
0
def make_muda(stretch, n_stretch):
    '''Construct a MUDA time stretcher'''

    shifter = muda.deformers.LogspaceTimeStretch(n_samples=n_stretch,
                                                 lower=-stretch,
                                                 upper=stretch)

    smkdirs(OUTPUT_PATH)
    with open(os.path.join(OUTPUT_PATH, 'muda.pkl'), 'wb') as fd:
        pickle.dump(shifter, fd)

    return shifter
Ejemplo n.º 7
0
def make_muda(n_semitones):
    '''Construct a MUDA pitch shifter'''

    tones = []
    for n in range(1, n_semitones + 1):
        tones.extend([-n, n])

    shifter = muda.deformers.PitchShift(n_semitones=tones)

    smkdirs(OUTPUT_PATH)
    with open(os.path.join(OUTPUT_PATH, 'muda.pkl'), 'wb') as fd:
        pickle.dump(shifter, fd)

    return shifter
Ejemplo n.º 8
0
def test_smkdirs():

    root = tempfile.mkdtemp()
    my_dirs = [root, 'level1', 'level2', 'level3']

    try:
        target = os.sep.join(my_dirs)
        util.smkdirs(target)

        for i in range(1, len(my_dirs)):
            tmpdir = os.sep.join(my_dirs[:i])
            assert os.path.exists(tmpdir)
            assert os.path.isdir(tmpdir)
    finally:
        for i in range(len(my_dirs), 0, -1):
            tmpdir = os.sep.join(my_dirs[:i])
            os.rmdir(tmpdir)
Ejemplo n.º 9
0
def test_smkdirs():

    root = tempfile.mkdtemp()
    my_dirs = [root, 'level1', 'level2', 'level3']

    try:
        target = os.sep.join(my_dirs)
        util.smkdirs(target)

        for i in range(1, len(my_dirs)):
            tmpdir = os.sep.join(my_dirs[:i])
            assert os.path.exists(tmpdir)
            assert os.path.isdir(tmpdir)
    finally:
        for i in range(len(my_dirs), 0, -1):
            tmpdir = os.sep.join(my_dirs[:i])
            os.rmdir(tmpdir)
Ejemplo n.º 10
0
                                   use_tqdm=True,
                                   weak_from_strong=True)

    # Save results to disk
    results_file = os.path.join(OUTPUT_PATH, modelid, '{:02d}'.format(fold),
                                'results.json')
    with open(results_file, 'w') as fp:
        json.dump(results, fp, indent=2)

    print('Done!')


if __name__ == '__main__':
    params = process_arguments(sys.argv[1:])

    smkdirs(OUTPUT_PATH)

    # Get current directory
    cwd = os.getcwd()
    # Get directory where git repo lives
    curfilePath = os.path.relpath(milsed.__file__)
    curDir = os.path.abspath(os.path.join(curfilePath, os.pardir))
    parentDir = os.path.abspath(os.path.join(curDir, os.pardir))
    # Change to the repo directory
    os.chdir(parentDir)
    # Get GIT version
    version = milsed.utils.increment_version(
        os.path.join(OUTPUT_PATH, 'version.txt'))
    # Return to working dir
    os.chdir(cwd)
Ejemplo n.º 11
0
                          duration,
                          modelid,
                          use_orig_duration=True)

    # Save results to disk
    results_file = os.path.join(OUTPUT_PATH, modelid, 'results.json')
    with open(results_file, 'w') as fp:
        json.dump(results, fp, indent=2)

    print('Done!')


if __name__ == '__main__':
    params = process_arguments(sys.argv[1:])

    smkdirs(OUTPUT_PATH)

    # Get current directory
    cwd = os.getcwd()
    # Get directory where git repo lives
    curfilePath = os.path.relpath(milsed.__file__)
    curDir = os.path.abspath(os.path.join(curfilePath, os.pardir))
    parentDir = os.path.abspath(os.path.join(curDir, os.pardir))
    # Change to the repo directory
    os.chdir(parentDir)
    # Get GIT version
    version = milsed.utils.increment_version(
        os.path.join(OUTPUT_PATH, 'version.txt'))
    # Return to working dir
    os.chdir(cwd)
Ejemplo n.º 12
0
    with open(os.path.join(OUTPUT_PATH, 'pump.pkl'), 'wb') as fd:
        pickle.dump(pump, fd)

    return pump


def convert(aud, jam, pump, outdir):
    data = pump.transform(aud, jam)
    fname = os.path.extsep.join(
        [os.path.join(outdir, crema.utils.base(aud)), 'h5'])
    crema.utils.save_h5(fname, **data)


if __name__ == '__main__':
    params = process_arguments(sys.argv[1:])
    smkdirs(OUTPUT_PATH)
    smkdirs(params.output_path)

    print('{}: pre-processing'.format(__doc__))
    print(params)
    pump = make_pump(params.sr, params.hop_length, params.n_octaves)

    stream = tqdm(crema.utils.get_ann_audio(params.input_path),
                  desc='Converting training data')
    Parallel(n_jobs=params.n_jobs)(
        delayed(convert)(aud, ann, pump, params.output_path)
        for aud, ann in stream)

    if params.augment_path:
        stream = tqdm(crema.utils.get_ann_audio(params.augment_path),
                      desc='Converting augmented data')
Ejemplo n.º 13
0
    cb.append(K.callbacks.EarlyStopping(patience=early_stopping,
                                        verbose=1,
                                        monitor=monitor))

    # Fit the model
    model.fit_generator(gen_train, epoch_size, epochs,
                        validation_data=gen_val,
                        validation_steps=validation_size,
                        callbacks=cb)


if __name__ == '__main__':
    params = process_arguments(sys.argv[1:])

    smkdirs(OUTPUT_PATH)

    version = crema.utils.increment_version(os.path.join(OUTPUT_PATH,
                                                         'version.txt'))

    print('{}: training'.format(__doc__))
    print('Model version: {}'.format(version))
    print(params)

    train(params.working,
          params.max_samples, params.duration,
          params.rate,
          params.batch_size,
          params.epochs, params.epoch_size,
          params.validation_size,
          params.early_stopping,
Ejemplo n.º 14
0
    with open(os.path.join(OUTPUT_PATH, 'pump.pkl'), 'wb') as fd:
        pickle.dump(pump, fd)

    return pump


def convert(aud, jam, pump, outdir):
    data = pump.transform(aud, jam)
    fname = os.path.extsep.join([os.path.join(outdir, crema.utils.base(aud)),
                                'h5'])
    crema.utils.save_h5(fname, **data)


if __name__ == '__main__':
    params = process_arguments(sys.argv[1:])
    smkdirs(OUTPUT_PATH)
    smkdirs(params.output_path)

    print('{}: pre-processing'.format(__doc__))
    print(params)
    pump = make_pump(params.sr, params.hop_length, params.n_octaves)

    stream = tqdm(crema.utils.get_ann_audio(params.input_path),
                  desc='Converting training data')
    Parallel(n_jobs=params.n_jobs)(delayed(convert)(aud, ann,
                                                    pump,
                                                    params.output_path)
                                   for aud, ann in stream)

    if params.augment_path:
        stream = tqdm(crema.utils.get_ann_audio(params.augment_path),
Ejemplo n.º 15
0
    cb.append(
        K.callbacks.EarlyStopping(patience=early_stopping,
                                  verbose=1,
                                  monitor=monitor))

    # Fit the model
    model.fit_generator(gen_train,
                        epoch_size,
                        epochs,
                        validation_data=gen_val,
                        validation_steps=validation_size,
                        callbacks=cb)


if __name__ == '__main__':
    params = process_arguments(sys.argv[1:])

    smkdirs(OUTPUT_PATH)

    version = crema.utils.increment_version(
        os.path.join(OUTPUT_PATH, 'version.txt'))

    print('{}: training'.format(__doc__))
    print('Model version: {}'.format(version))
    print(params)

    train(params.working, params.max_samples, params.duration, params.rate,
          params.batch_size, params.epochs, params.epoch_size,
          params.early_stopping, params.reduce_lr, params.seed)