Ejemplo n.º 1
0
  def testLogistic(self, dtype):
    key = random.PRNGKey(0)
    rand = lambda key: random.logistic(key, (10000,), dtype)
    crand = api.jit(rand)

    uncompiled_samples = rand(key)
    compiled_samples = crand(key)

    for samples in [uncompiled_samples, compiled_samples]:
      self._CheckKolmogorovSmirnovCDF(samples, scipy.stats.logistic().cdf)
Ejemplo n.º 2
0
def conditional_params_to_sample(rng, conditional_params):
    means, inv_scales, logit_probs = conditional_params
    rng_mix, rng_logistic = random.split(rng)
    # Add channel dimension to one-hot mixture indicator
    mix_indicator = _categorical_onehot(rng_mix, logit_probs)[..., jnp.newaxis]
    # Use the mixture indicator to select the mean and inverse scale
    mean = jnp.sum(means * mix_indicator, -4)
    inv_scale = jnp.sum(inv_scales * mix_indicator, -4)
    sample = mean + random.logistic(rng_logistic, mean.shape) / inv_scale
    return snap_to_grid(sample)
Ejemplo n.º 3
0
def conditional_params_to_sample(rng, conditional_params):
    means, inv_scales, logit_probs = conditional_params
    _, h, w, c = means.shape
    rng_mix, rng_logistic = random.split(rng)
    mix_idx = np.broadcast_to(
        _gumbel_max(rng_mix, logit_probs)[..., np.newaxis],
        (h, w, c))[np.newaxis]
    means = np.take_along_axis(means, mix_idx, 0)[0]
    inv_scales = np.take_along_axis(inv_scales, mix_idx, 0)[0]
    return (
        means +
        random.logistic(rng_logistic, means.shape, means.dtype) / inv_scales)
Ejemplo n.º 4
0
  def testLogistic(self, dtype):
    if jtu.device_under_test() == "tpu" and jnp.dtype(dtype).itemsize < 3:
      raise SkipTest("random.logistic() not supported on TPU for 16-bit types.")
    key = random.PRNGKey(0)
    rand = lambda key: random.logistic(key, (10000,), dtype)
    crand = api.jit(rand)

    uncompiled_samples = rand(key)
    compiled_samples = crand(key)

    for samples in [uncompiled_samples, compiled_samples]:
      self._CheckKolmogorovSmirnovCDF(samples, scipy.stats.logistic().cdf)
Ejemplo n.º 5
0
def sample(p, temperature, key, num_samples=1):
    """
    Generate Binomial Concrete samples
    :param p: Binomial Concrete params (interpreted as Bernoulli probabilities) (jax.numpy array)
    :param temperature: temperature parameter
    :param key: PRNG key
    :param num_samples: number of samples
    """
    tol = 1e-7
    p = np.clip(p, tol, 1 - tol)
    logit_p = logit(p)
    base_randomness = random.logistic(key, shape=(num_samples, *p.shape))
    return nn.sigmoid((logit_p + base_randomness) / (temperature + tol))
Ejemplo n.º 6
0
def logistic_mix_sample(nn_out, rng):
    m, t, inv_scales, logit_weights = logistic_preprocess(nn_out)
    rng_mix, rng_logistic = random.split(rng)
    mix_idx = random.categorical(rng_mix, logit_weights, -3)

    def select_mix(arr):
        return jnp.squeeze(
            jnp.take_along_axis(arr, jnp.expand_dims(mix_idx, (-4, -1)), -4),
            -4)

    m, t, inv_scales = map(lambda x: jnp.moveaxis(select_mix(x), -1, 0),
                           (m, t, inv_scales))
    l = random.logistic(rng_logistic, m.shape) / inv_scales
    img_red = m[0] + l[0]
    img_green = m[1] + t[0] * img_red + l[1]
    img_blue = m[2] + t[1] * img_red + t[2] * img_green + l[2]
    return jnp.stack([img_red, img_green, img_blue], -1)
Ejemplo n.º 7
0
def logistic(loc=0.0, scale=1.0, size=None):
    assert loc == 0.
    assert scale == 1.
    return JaxArray(jr.logistic(DEFAULT.split_key(), shape=_size2shape(size)))
Ejemplo n.º 8
0
 def sample(self, key, sample_shape=()):
     z = random.logistic(key,
                         shape=sample_shape + self.batch_shape +
                         self.event_shape)
     return self.loc + z * self.scale