Ejemplo n.º 1
0
def test_eisenstein_hu():
    # We first define equivalent CCL and jax_cosmo cosmologies
    cosmo_ccl = ccl.Cosmology(
        Omega_c=0.3,
        Omega_b=0.05,
        h=0.7,
        sigma8=0.8,
        n_s=0.96,
        Neff=0,
        transfer_function="eisenstein_hu",
        matter_power_spectrum="linear",
    )

    cosmo_jax = Cosmology(
        Omega_c=0.3,
        Omega_b=0.05,
        h=0.7,
        sigma8=0.8,
        n_s=0.96,
        Omega_k=0.0,
        w0=-1.0,
        wa=0.0,
    )

    # Test array of scales
    k = np.logspace(-4, 2, 512)

    # Computing matter power spectrum
    pk_ccl = ccl.linear_matter_power(cosmo_ccl, k, 1.0)
    pk_jax = (power.linear_matter_power(cosmo_jax, k / cosmo_jax.h, a=1.0) /
              cosmo_jax.h**3)

    assert_allclose(pk_ccl, pk_jax, rtol=0.5e-2)
Ejemplo n.º 2
0
def test_growth_rate():
    # We first define equivalent CCL and jax_cosmo cosmologies
    cosmo_ccl = ccl.Cosmology(
        Omega_c=0.3,
        Omega_b=0.05,
        h=0.7,
        sigma8=0.8,
        n_s=0.96,
        Neff=0,
        transfer_function="eisenstein_hu",
        matter_power_spectrum="linear",
    )

    cosmo_jax = Cosmology(
        Omega_c=0.3,
        Omega_b=0.05,
        h=0.7,
        sigma8=0.8,
        n_s=0.96,
        Omega_k=0.0,
        w0=-1.0,
        wa=0.0,
    )

    # Test array of scale factors
    a = np.linspace(0.01, 1.0)

    fccl = ccl.growth_rate(cosmo_ccl, a)
    fjax = bkgrd.growth_rate(cosmo_jax, a)

    assert_allclose(fccl, fjax, rtol=1e-2)
Ejemplo n.º 3
0
def test_growth_rate_gamma():
    # We test consistency of both effective growth
    # parametrisation for LCDM
    cosmo_ccl = ccl.Cosmology(
        Omega_c=0.3,
        Omega_b=0.05,
        h=0.7,
        sigma8=0.8,
        n_s=0.96,
        Neff=0,
        transfer_function="eisenstein_hu",
        matter_power_spectrum="linear",
    )

    cosmo_jax = Cosmology(
        Omega_c=0.3,
        Omega_b=0.05,
        h=0.7,
        sigma8=0.8,
        n_s=0.96,
        Omega_k=0.0,
        w0=-1.0,
        wa=0.0,
        gamma=0.55,
    )

    # Test array of scale factors
    a = np.linspace(0.01, 1.0)

    fccl = ccl.growth_rate(cosmo_ccl, a)
    fjax = bkgrd.growth_rate(cosmo_jax, a)

    assert_allclose(fccl, fjax, rtol=1e-2)
Ejemplo n.º 4
0
def test_growth():
  # We first define equivalent CCL and jax_cosmo cosmologies
  cosmo_ccl = ccl.Cosmology(
    Omega_c=0.3, Omega_b=0.05, h=0.7, sigma8 = 0.8, n_s=0.96, Neff=0,
    transfer_function='eisenstein_hu', matter_power_spectrum='linear')

  cosmo_jax = Cosmology(Omega_c=0.3, Omega_b=0.05, h=0.7, sigma8 = 0.8, n_s=0.96,
                         Omega_k=0., w0=-1., wa=0.)

  # Test array of scale factors
  a = np.linspace(0.1, 1.)

  gccl = ccl.growth_factor(cosmo_ccl, a)
  gjax = bkgrd.growth_factor(cosmo_jax, a)

  assert_allclose(gccl, gjax, rtol=1e-3)
Ejemplo n.º 5
0
def test_clustering_cl():
    # We first define equivalent CCL and jax_cosmo cosmologies
    cosmo_ccl = ccl.Cosmology(
        Omega_c=0.3,
        Omega_b=0.05,
        h=0.7,
        sigma8=0.8,
        n_s=0.96,
        Neff=0,
        transfer_function="eisenstein_hu",
        matter_power_spectrum="halofit",
    )

    cosmo_jax = Cosmology(
        Omega_c=0.3,
        Omega_b=0.05,
        h=0.7,
        sigma8=0.8,
        n_s=0.96,
        Omega_k=0.0,
        w0=-1.0,
        wa=0.0,
    )

    # Define a redshift distribution
    nz = smail_nz(1.0, 2.0, 1.0)

    # And a bias model
    bias = constant_linear_bias(1.0)

    z = np.linspace(0, 5.0, 1024)
    tracer_ccl = ccl.NumberCountsTracer(cosmo_ccl,
                                        has_rsd=False,
                                        dndz=(z, nz(z)),
                                        bias=(z, bias(cosmo_jax, z)))
    tracer_jax = probes.NumberCounts([nz], bias)

    # Get an ell range for the cls
    ell = np.logspace(0.1, 4)

    # Compute the cls
    cl_ccl = ccl.angular_cl(cosmo_ccl, tracer_ccl, tracer_ccl, ell)
    cl_jax = angular_cl(cosmo_jax, ell, [tracer_jax])

    assert_allclose(cl_ccl, cl_jax[0], rtol=0.5e-2)
Ejemplo n.º 6
0
def test_lensing_cl_IA():
    # We first define equivalent CCL and jax_cosmo cosmologies
    cosmo_ccl = ccl.Cosmology(
        Omega_c=0.3,
        Omega_b=0.05,
        h=0.7,
        sigma8=0.8,
        n_s=0.96,
        Neff=0,
        transfer_function="eisenstein_hu",
        matter_power_spectrum="halofit",
    )

    cosmo_jax = Cosmology(
        Omega_c=0.3,
        Omega_b=0.05,
        h=0.7,
        sigma8=0.8,
        n_s=0.96,
        Omega_k=0.0,
        w0=-1.0,
        wa=0.0,
    )

    # Define a redshift distribution
    nz = smail_nz(1.0, 2.0, 1.0)
    z = np.linspace(0, 5.0, 1024)

    # Pretty big IA to highlight potential differences stemming from IA
    # implementation
    bias = inverse_growth_linear_bias(10.0)

    tracer_ccl = ccl.WeakLensingTracer(cosmo_ccl, (z, nz(z)),
                                       ia_bias=(z, bias(cosmo_jax, z)))
    tracer_jax = probes.WeakLensing([nz], bias)

    # Get an ell range for the cls
    ell = np.logspace(0.1, 4)

    # Compute the cls
    cl_ccl = ccl.angular_cl(cosmo_ccl, tracer_ccl, tracer_ccl, ell)
    cl_jax = angular_cl(cosmo_jax, ell, [tracer_jax])

    assert_allclose(cl_ccl, cl_jax[0], rtol=1e-2)
Ejemplo n.º 7
0
def test_distances_flat():
    # We first define equivalent CCL and jax_cosmo cosmologies
    cosmo_ccl = ccl.Cosmology(
        Omega_c=0.3,
        Omega_b=0.05,
        h=0.7,
        sigma8=0.8,
        n_s=0.96,
        Neff=0,
        transfer_function="eisenstein_hu",
        matter_power_spectrum="linear",
    )

    cosmo_jax = Cosmology(
        Omega_c=0.3,
        Omega_b=0.05,
        h=0.7,
        sigma8=0.8,
        n_s=0.96,
        Omega_k=0.0,
        w0=-1.0,
        wa=0.0,
    )

    # Test array of scale factors
    a = np.linspace(0.01, 1.0)

    chi_ccl = ccl.comoving_radial_distance(cosmo_ccl, a)
    chi_jax = bkgrd.radial_comoving_distance(cosmo_jax, a) / cosmo_jax.h
    assert_allclose(chi_ccl, chi_jax, rtol=0.5e-2)

    chi_ccl = ccl.comoving_angular_distance(cosmo_ccl, a)
    chi_jax = bkgrd.transverse_comoving_distance(cosmo_jax, a) / cosmo_jax.h
    assert_allclose(chi_ccl, chi_jax, rtol=0.5e-2)

    chi_ccl = ccl.angular_diameter_distance(cosmo_ccl, a)
    chi_jax = bkgrd.angular_diameter_distance(cosmo_jax, a) / cosmo_jax.h
    assert_allclose(chi_ccl, chi_jax, rtol=0.5e-2)
Ejemplo n.º 8
0
def test_lensing_cl():
    # We first define equivalent CCL and jax_cosmo cosmologies
    cosmo_ccl = ccl.Cosmology(
        Omega_c=0.3,
        Omega_b=0.05,
        h=0.7,
        sigma8=0.8,
        n_s=0.96,
        Neff=0,
        transfer_function="eisenstein_hu",
        matter_power_spectrum="halofit",
    )

    cosmo_jax = Cosmology(
        Omega_c=0.3,
        Omega_b=0.05,
        h=0.7,
        sigma8=0.8,
        n_s=0.96,
        Omega_k=0.0,
        w0=-1.0,
        wa=0.0,
    )

    # Define a redshift distribution
    nz = smail_nz(1.0, 2.0, 1.0)
    z = np.linspace(0, 5.0, 1024)
    tracer_ccl = ccl.WeakLensingTracer(cosmo_ccl, (z, nz(z)), use_A_ia=False)
    tracer_jax = probes.WeakLensing([nz])

    # Get an ell range for the cls
    ell = np.logspace(0.1, 4)

    # Compute the cls
    cl_ccl = ccl.angular_cl(cosmo_ccl, tracer_ccl, tracer_ccl, ell)
    cl_jax = angular_cl(cosmo_jax, ell, [tracer_jax])

    assert_allclose(cl_ccl, cl_jax[0], rtol=0.5e-2)