Ejemplo n.º 1
0
def variation(args):
    """
    %prog variation P1.bed P2.bed F1.bed

    Associate IES in parents and progeny.
    """
    p = OptionParser(variation.__doc__)
    p.add_option("--diversity",
                 choices=("breakpoint", "variant"),
                 default="variant",
                 help="Plot diversity")
    opts, args, iopts = p.set_image_options(args, figsize="6x6")

    if len(args) != 3:
        sys.exit(not p.print_help())

    pfs = [op.basename(x).split('-')[0] for x in args]
    P1, P2, F1 = pfs
    newbedfile = "-".join(pfs) + ".bed"
    if need_update(args, newbedfile):
        newbed = Bed()
        for pf, filename in zip(pfs, args):
            bed = Bed(filename)
            for b in bed:
                b.accn = "-".join((pf, b.accn))
                b.score = None
                newbed.append(b)
        newbed.print_to_file(newbedfile, sorted=True)

    neworder = Bed(newbedfile).order
    mergedbedfile = mergeBed(newbedfile, nms=True)
    bed = Bed(mergedbedfile)
    valid = 0
    total_counts = Counter()
    F1_counts = []
    bp_diff = []
    novelbedfile = "novel.bed"
    fw = open(novelbedfile, "w")
    for b in bed:
        accns = b.accn.split(',')
        pfs_accns = [x.split("-")[0] for x in accns]
        pfs_counts = Counter(pfs_accns)
        if len(pfs_counts) != 3:
            print(b, file=fw)
            continue

        valid += 1
        total_counts += pfs_counts
        F1_counts.append(pfs_counts[F1])

        # Collect breakpoint positions between P1 and F1
        P1_accns = [x for x in accns if x.split("-")[0] == P1]
        F1_accns = [x for x in accns if x.split("-")[0] == F1]
        if len(P1_accns) != 1:
            continue

        ri, ref = neworder[P1_accns[0]]
        P1_accns = [neworder[x][-1] for x in F1_accns]
        bp_diff.extend(x.start - ref.start for x in P1_accns)
        bp_diff.extend(x.end - ref.end for x in P1_accns)

    print("A total of {0} sites show consistent deletions across samples.".\
                    format(percentage(valid, len(bed))), file=sys.stderr)
    for pf, count in total_counts.items():
        print("{0:>9}: {1:.2f} deletions/site".\
                    format(pf, count * 1. / valid), file=sys.stderr)

    F1_counts = Counter(F1_counts)

    # Plot the IES variant number diversity
    from jcvi.graphics.base import plt, savefig, set_ticklabels_helvetica

    fig = plt.figure(1, (iopts.w, iopts.h))
    if opts.diversity == "variant":
        left, height = zip(*sorted(F1_counts.items()))
        for l, h in zip(left, height):
            print("{0:>9} variants: {1}".format(l, h), file=sys.stderr)
            plt.text(l,
                     h + 5,
                     str(h),
                     color="darkslategray",
                     size=8,
                     ha="center",
                     va="bottom",
                     rotation=90)

        plt.bar(left, height, align="center")
        plt.xlabel("Identified number of IES per site")
        plt.ylabel("Counts")
        plt.title("IES variation in progeny pool")
        ax = plt.gca()
        set_ticklabels_helvetica(ax)
        savefig(F1 + ".counts.pdf")

    # Plot the IES breakpoint position diversity
    else:
        bp_diff = Counter(bp_diff)
        bp_diff_abs = Counter()
        for k, v in bp_diff.items():
            bp_diff_abs[abs(k)] += v
        plt.figure(1, (iopts.w, iopts.h))
        left, height = zip(*sorted(bp_diff_abs.items()))
        for l, h in zip(left, height)[:21]:
            plt.text(l,
                     h + 50,
                     str(h),
                     color="darkslategray",
                     size=8,
                     ha="center",
                     va="bottom",
                     rotation=90)

        plt.bar(left, height, align="center")
        plt.xlabel("Progeny breakpoint relative to SB210")
        plt.ylabel("Counts")
        plt.xlim(-.5, 20.5)
        ax = plt.gca()
        set_ticklabels_helvetica(ax)
        savefig(F1 + ".breaks.pdf")
        # Serialize the data to a file
        fw = open("Breakpoint-offset-histogram.csv", "w")
        for k, v in sorted(bp_diff.items()):
            print("{0},{1}".format(k, v), file=fw)
        fw.close()

        total = sum(height)
        zeros = bp_diff[0]
        within_20 = sum([v for i, v in bp_diff.items() if -20 <= i <= 20])
        print("No deviation: {0}".format(percentage(zeros, total)),
              file=sys.stderr)
        print(" Within 20bp: {0}".format(percentage(within_20, total)),
              file=sys.stderr)
Ejemplo n.º 2
0
def histogram(args):
    """
    %prog histogram meryl.histogram species K

    Plot the histogram based on meryl K-mer distribution, species and N are
    only used to annotate the graphic.
    """
    p = OptionParser(histogram.__doc__)
    p.add_option(
        "--vmin",
        dest="vmin",
        default=1,
        type="int",
        help="minimum value, inclusive",
    )
    p.add_option(
        "--vmax",
        dest="vmax",
        default=100,
        type="int",
        help="maximum value, inclusive",
    )
    p.add_option(
        "--pdf",
        default=False,
        action="store_true",
        help="Print PDF instead of ASCII plot",
    )
    p.add_option(
        "--method",
        choices=("nbinom", "allpaths"),
        default="nbinom",
        help=
        "'nbinom' - slow but more accurate for het or polyploid genome; 'allpaths' - fast and works for homozygous enomes",
    )
    p.add_option(
        "--maxiter",
        default=100,
        type="int",
        help="Max iterations for optimization. Only used with --method nbinom",
    )
    p.add_option("--coverage",
                 default=0,
                 type="int",
                 help="Kmer coverage [default: auto]")
    p.add_option(
        "--nopeaks",
        default=False,
        action="store_true",
        help="Do not annotate K-mer peaks",
    )
    opts, args, iopts = p.set_image_options(args, figsize="7x7")

    if len(args) != 3:
        sys.exit(not p.print_help())

    histfile, species, N = args
    method = opts.method
    vmin, vmax = opts.vmin, opts.vmax
    ascii = not opts.pdf
    peaks = not opts.nopeaks and method == "allpaths"
    N = int(N)

    if histfile.rsplit(".", 1)[-1] in ("mcdat", "mcidx"):
        logging.debug("CA kmer index found")
        histfile = merylhistogram(histfile)

    ks = KmerSpectrum(histfile)
    method_info = ks.analyze(K=N, maxiter=opts.maxiter, method=method)

    Total_Kmers = int(ks.totalKmers)
    coverage = opts.coverage
    Kmer_coverage = ks.lambda_ if not coverage else coverage
    Genome_size = int(round(Total_Kmers * 1.0 / Kmer_coverage))

    Total_Kmers_msg = "Total {0}-mers: {1}".format(N, thousands(Total_Kmers))
    Kmer_coverage_msg = "{0}-mer coverage: {1:.1f}x".format(N, Kmer_coverage)
    Genome_size_msg = "Estimated genome size: {0:.1f} Mb".format(Genome_size /
                                                                 1e6)
    Repetitive_msg = ks.repetitive
    SNPrate_msg = ks.snprate

    for msg in (Total_Kmers_msg, Kmer_coverage_msg, Genome_size_msg):
        print(msg, file=sys.stderr)

    x, y = ks.get_xy(vmin, vmax)
    title = "{0} {1}-mer histogram".format(species, N)

    if ascii:
        asciiplot(x, y, title=title)
        return Genome_size

    plt.figure(1, (iopts.w, iopts.h))
    plt.bar(x, y, fc="#b2df8a", lw=0)
    # Plot the negative binomial fit
    if method == "nbinom":
        generative_model = method_info["generative_model"]
        GG = method_info["Gbins"]
        ll = method_info["lambda"]
        rr = method_info["rho"]
        kf_range = method_info["kf_range"]
        stacked = generative_model(GG, ll, rr)
        plt.plot(
            kf_range,
            stacked,
            ":",
            color="#6a3d9a",
            lw=2,
        )

    ax = plt.gca()

    if peaks:  # Only works for method 'allpaths'
        t = (ks.min1, ks.max1, ks.min2, ks.max2, ks.min3)
        tcounts = [(x, y) for x, y in ks.counts if x in t]
        if tcounts:
            x, y = zip(*tcounts)
            tcounts = dict(tcounts)
            plt.plot(x, y, "ko", lw=3, mec="k", mfc="w")
            ax.text(ks.max1, tcounts[ks.max1], "SNP peak")
            ax.text(ks.max2, tcounts[ks.max2], "Main peak")

    ymin, ymax = ax.get_ylim()
    ymax = ymax * 7 / 6
    if method == "nbinom":
        # Plot multiple CN locations, CN1, CN2, ... up to ploidy
        cn_color = "#a6cee3"
        for i in range(1, ks.ploidy + 1):
            x = i * ks.lambda_
            plt.plot((x, x), (0, ymax), "-.", color=cn_color)
            plt.text(
                x,
                ymax * 0.95,
                "CN{}".format(i),
                ha="right",
                va="center",
                color=cn_color,
                rotation=90,
            )

    messages = [
        Total_Kmers_msg,
        Kmer_coverage_msg,
        Genome_size_msg,
        Repetitive_msg,
        SNPrate_msg,
    ]
    if method == "nbinom":
        messages += [ks.ploidy_message] + ks.copy_messages
    write_messages(ax, messages)

    ax.set_title(markup(title))
    ax.set_xlim((0, vmax))
    ax.set_ylim((0, ymax))
    adjust_spines(ax, ["left", "bottom"], outward=True)
    xlabel, ylabel = "Coverage (X)", "Counts"
    ax.set_xlabel(xlabel)
    ax.set_ylabel(ylabel)
    set_human_axis(ax)

    imagename = histfile.split(".")[0] + "." + iopts.format
    savefig(imagename, dpi=100)

    return Genome_size
Ejemplo n.º 3
0
Archivo: ies.py Proyecto: Hensonmw/jcvi
def variation(args):
    """
    %prog variation P1.bed P2.bed F1.bed

    Associate IES in parents and progeny.
    """
    p = OptionParser(variation.__doc__)
    p.add_option("--diversity", choices=("breakpoint", "variant"),
                 default="variant", help="Plot diversity")
    opts, args, iopts = p.set_image_options(args, figsize="6x6")

    if len(args) != 3:
        sys.exit(not p.print_help())

    pfs = [op.basename(x).split('-')[0] for x in args]
    P1, P2, F1 = pfs
    newbedfile = "-".join(pfs) + ".bed"
    if need_update(args, newbedfile):
        newbed = Bed()
        for pf, filename in zip(pfs, args):
            bed = Bed(filename)
            for b in bed:
                b.accn = "-".join((pf, b.accn))
                b.score = None
                newbed.append(b)
        newbed.print_to_file(newbedfile, sorted=True)

    neworder = Bed(newbedfile).order
    mergedbedfile = mergeBed(newbedfile, nms=True)
    bed = Bed(mergedbedfile)
    valid = 0
    total_counts = Counter()
    F1_counts = []
    bp_diff = []
    novelbedfile = "novel.bed"
    fw = open(novelbedfile, "w")
    for b in bed:
        accns = b.accn.split(',')
        pfs_accns = [x.split("-")[0] for x in accns]
        pfs_counts = Counter(pfs_accns)
        if len(pfs_counts) != 3:
            print >> fw, b
            continue

        valid += 1
        total_counts += pfs_counts
        F1_counts.append(pfs_counts[F1])

        # Collect breakpoint positions between P1 and F1
        P1_accns = [x for x in accns if x.split("-")[0] == P1]
        F1_accns = [x for x in accns if x.split("-")[0] == F1]
        if len(P1_accns) != 1:
            continue

        ri, ref = neworder[P1_accns[0]]
        P1_accns = [neworder[x][-1] for x in F1_accns]
        bp_diff.extend(x.start - ref.start for x in P1_accns)
        bp_diff.extend(x.end - ref.end for x in P1_accns)

    print >> sys.stderr, \
            "A total of {0} sites show consistent deletions across samples.".\
                    format(percentage(valid, len(bed)))
    for pf, count in total_counts.items():
        print >> sys.stderr, "{0:>9}: {1:.2f} deletions/site".\
                    format(pf, count * 1. / valid)

    F1_counts = Counter(F1_counts)

    # Plot the IES variant number diversity
    from jcvi.graphics.base import plt, savefig, set_ticklabels_helvetica

    fig = plt.figure(1, (iopts.w, iopts.h))
    if opts.diversity == "variant":
        left, height = zip(*sorted(F1_counts.items()))
        for l, h in zip(left, height):
            print >> sys.stderr, "{0:>9} variants: {1}".format(l, h)
            plt.text(l, h + 5, str(h), color="darkslategray", size=8,
                     ha="center", va="bottom", rotation=90)

        plt.bar(left, height, align="center")
        plt.xlabel("Identified number of IES per site")
        plt.ylabel("Counts")
        plt.title("IES variation in progeny pool")
        ax = plt.gca()
        set_ticklabels_helvetica(ax)
        savefig(F1 + ".counts.pdf")

    # Plot the IES breakpoint position diversity
    else:
        bp_diff = Counter(bp_diff)
        bp_diff_abs = Counter()
        for k, v in bp_diff.items():
            bp_diff_abs[abs(k)] += v
        plt.figure(1, (iopts.w, iopts.h))
        left, height = zip(*sorted(bp_diff_abs.items()))
        for l, h in zip(left, height)[:21]:
            plt.text(l, h + 50, str(h), color="darkslategray", size=8,
                     ha="center", va="bottom", rotation=90)

        plt.bar(left, height, align="center")
        plt.xlabel("Progeny breakpoint relative to SB210")
        plt.ylabel("Counts")
        plt.xlim(-.5, 20.5)
        ax = plt.gca()
        set_ticklabels_helvetica(ax)
        savefig(F1 + ".breaks.pdf")
        # Serialize the data to a file
        fw = open("Breakpoint-offset-histogram.csv", "w")
        for k, v in sorted(bp_diff.items()):
            print >> fw, "{0},{1}".format(k, v)
        fw.close()

        total = sum(height)
        zeros = bp_diff[0]
        within_20 = sum([v for i, v in bp_diff.items() if -20 <= i <= 20])
        print >> sys.stderr, "No deviation: {0}".format(percentage(zeros, total))
        print >> sys.stderr, " Within 20bp: {0}".format(percentage(within_20, total))