def variation(args): """ %prog variation P1.bed P2.bed F1.bed Associate IES in parents and progeny. """ p = OptionParser(variation.__doc__) p.add_option("--diversity", choices=("breakpoint", "variant"), default="variant", help="Plot diversity") opts, args, iopts = p.set_image_options(args, figsize="6x6") if len(args) != 3: sys.exit(not p.print_help()) pfs = [op.basename(x).split('-')[0] for x in args] P1, P2, F1 = pfs newbedfile = "-".join(pfs) + ".bed" if need_update(args, newbedfile): newbed = Bed() for pf, filename in zip(pfs, args): bed = Bed(filename) for b in bed: b.accn = "-".join((pf, b.accn)) b.score = None newbed.append(b) newbed.print_to_file(newbedfile, sorted=True) neworder = Bed(newbedfile).order mergedbedfile = mergeBed(newbedfile, nms=True) bed = Bed(mergedbedfile) valid = 0 total_counts = Counter() F1_counts = [] bp_diff = [] novelbedfile = "novel.bed" fw = open(novelbedfile, "w") for b in bed: accns = b.accn.split(',') pfs_accns = [x.split("-")[0] for x in accns] pfs_counts = Counter(pfs_accns) if len(pfs_counts) != 3: print(b, file=fw) continue valid += 1 total_counts += pfs_counts F1_counts.append(pfs_counts[F1]) # Collect breakpoint positions between P1 and F1 P1_accns = [x for x in accns if x.split("-")[0] == P1] F1_accns = [x for x in accns if x.split("-")[0] == F1] if len(P1_accns) != 1: continue ri, ref = neworder[P1_accns[0]] P1_accns = [neworder[x][-1] for x in F1_accns] bp_diff.extend(x.start - ref.start for x in P1_accns) bp_diff.extend(x.end - ref.end for x in P1_accns) print("A total of {0} sites show consistent deletions across samples.".\ format(percentage(valid, len(bed))), file=sys.stderr) for pf, count in total_counts.items(): print("{0:>9}: {1:.2f} deletions/site".\ format(pf, count * 1. / valid), file=sys.stderr) F1_counts = Counter(F1_counts) # Plot the IES variant number diversity from jcvi.graphics.base import plt, savefig, set_ticklabels_helvetica fig = plt.figure(1, (iopts.w, iopts.h)) if opts.diversity == "variant": left, height = zip(*sorted(F1_counts.items())) for l, h in zip(left, height): print("{0:>9} variants: {1}".format(l, h), file=sys.stderr) plt.text(l, h + 5, str(h), color="darkslategray", size=8, ha="center", va="bottom", rotation=90) plt.bar(left, height, align="center") plt.xlabel("Identified number of IES per site") plt.ylabel("Counts") plt.title("IES variation in progeny pool") ax = plt.gca() set_ticklabels_helvetica(ax) savefig(F1 + ".counts.pdf") # Plot the IES breakpoint position diversity else: bp_diff = Counter(bp_diff) bp_diff_abs = Counter() for k, v in bp_diff.items(): bp_diff_abs[abs(k)] += v plt.figure(1, (iopts.w, iopts.h)) left, height = zip(*sorted(bp_diff_abs.items())) for l, h in zip(left, height)[:21]: plt.text(l, h + 50, str(h), color="darkslategray", size=8, ha="center", va="bottom", rotation=90) plt.bar(left, height, align="center") plt.xlabel("Progeny breakpoint relative to SB210") plt.ylabel("Counts") plt.xlim(-.5, 20.5) ax = plt.gca() set_ticklabels_helvetica(ax) savefig(F1 + ".breaks.pdf") # Serialize the data to a file fw = open("Breakpoint-offset-histogram.csv", "w") for k, v in sorted(bp_diff.items()): print("{0},{1}".format(k, v), file=fw) fw.close() total = sum(height) zeros = bp_diff[0] within_20 = sum([v for i, v in bp_diff.items() if -20 <= i <= 20]) print("No deviation: {0}".format(percentage(zeros, total)), file=sys.stderr) print(" Within 20bp: {0}".format(percentage(within_20, total)), file=sys.stderr)
def histogram(args): """ %prog histogram meryl.histogram species K Plot the histogram based on meryl K-mer distribution, species and N are only used to annotate the graphic. """ p = OptionParser(histogram.__doc__) p.add_option( "--vmin", dest="vmin", default=1, type="int", help="minimum value, inclusive", ) p.add_option( "--vmax", dest="vmax", default=100, type="int", help="maximum value, inclusive", ) p.add_option( "--pdf", default=False, action="store_true", help="Print PDF instead of ASCII plot", ) p.add_option( "--method", choices=("nbinom", "allpaths"), default="nbinom", help= "'nbinom' - slow but more accurate for het or polyploid genome; 'allpaths' - fast and works for homozygous enomes", ) p.add_option( "--maxiter", default=100, type="int", help="Max iterations for optimization. Only used with --method nbinom", ) p.add_option("--coverage", default=0, type="int", help="Kmer coverage [default: auto]") p.add_option( "--nopeaks", default=False, action="store_true", help="Do not annotate K-mer peaks", ) opts, args, iopts = p.set_image_options(args, figsize="7x7") if len(args) != 3: sys.exit(not p.print_help()) histfile, species, N = args method = opts.method vmin, vmax = opts.vmin, opts.vmax ascii = not opts.pdf peaks = not opts.nopeaks and method == "allpaths" N = int(N) if histfile.rsplit(".", 1)[-1] in ("mcdat", "mcidx"): logging.debug("CA kmer index found") histfile = merylhistogram(histfile) ks = KmerSpectrum(histfile) method_info = ks.analyze(K=N, maxiter=opts.maxiter, method=method) Total_Kmers = int(ks.totalKmers) coverage = opts.coverage Kmer_coverage = ks.lambda_ if not coverage else coverage Genome_size = int(round(Total_Kmers * 1.0 / Kmer_coverage)) Total_Kmers_msg = "Total {0}-mers: {1}".format(N, thousands(Total_Kmers)) Kmer_coverage_msg = "{0}-mer coverage: {1:.1f}x".format(N, Kmer_coverage) Genome_size_msg = "Estimated genome size: {0:.1f} Mb".format(Genome_size / 1e6) Repetitive_msg = ks.repetitive SNPrate_msg = ks.snprate for msg in (Total_Kmers_msg, Kmer_coverage_msg, Genome_size_msg): print(msg, file=sys.stderr) x, y = ks.get_xy(vmin, vmax) title = "{0} {1}-mer histogram".format(species, N) if ascii: asciiplot(x, y, title=title) return Genome_size plt.figure(1, (iopts.w, iopts.h)) plt.bar(x, y, fc="#b2df8a", lw=0) # Plot the negative binomial fit if method == "nbinom": generative_model = method_info["generative_model"] GG = method_info["Gbins"] ll = method_info["lambda"] rr = method_info["rho"] kf_range = method_info["kf_range"] stacked = generative_model(GG, ll, rr) plt.plot( kf_range, stacked, ":", color="#6a3d9a", lw=2, ) ax = plt.gca() if peaks: # Only works for method 'allpaths' t = (ks.min1, ks.max1, ks.min2, ks.max2, ks.min3) tcounts = [(x, y) for x, y in ks.counts if x in t] if tcounts: x, y = zip(*tcounts) tcounts = dict(tcounts) plt.plot(x, y, "ko", lw=3, mec="k", mfc="w") ax.text(ks.max1, tcounts[ks.max1], "SNP peak") ax.text(ks.max2, tcounts[ks.max2], "Main peak") ymin, ymax = ax.get_ylim() ymax = ymax * 7 / 6 if method == "nbinom": # Plot multiple CN locations, CN1, CN2, ... up to ploidy cn_color = "#a6cee3" for i in range(1, ks.ploidy + 1): x = i * ks.lambda_ plt.plot((x, x), (0, ymax), "-.", color=cn_color) plt.text( x, ymax * 0.95, "CN{}".format(i), ha="right", va="center", color=cn_color, rotation=90, ) messages = [ Total_Kmers_msg, Kmer_coverage_msg, Genome_size_msg, Repetitive_msg, SNPrate_msg, ] if method == "nbinom": messages += [ks.ploidy_message] + ks.copy_messages write_messages(ax, messages) ax.set_title(markup(title)) ax.set_xlim((0, vmax)) ax.set_ylim((0, ymax)) adjust_spines(ax, ["left", "bottom"], outward=True) xlabel, ylabel = "Coverage (X)", "Counts" ax.set_xlabel(xlabel) ax.set_ylabel(ylabel) set_human_axis(ax) imagename = histfile.split(".")[0] + "." + iopts.format savefig(imagename, dpi=100) return Genome_size
def variation(args): """ %prog variation P1.bed P2.bed F1.bed Associate IES in parents and progeny. """ p = OptionParser(variation.__doc__) p.add_option("--diversity", choices=("breakpoint", "variant"), default="variant", help="Plot diversity") opts, args, iopts = p.set_image_options(args, figsize="6x6") if len(args) != 3: sys.exit(not p.print_help()) pfs = [op.basename(x).split('-')[0] for x in args] P1, P2, F1 = pfs newbedfile = "-".join(pfs) + ".bed" if need_update(args, newbedfile): newbed = Bed() for pf, filename in zip(pfs, args): bed = Bed(filename) for b in bed: b.accn = "-".join((pf, b.accn)) b.score = None newbed.append(b) newbed.print_to_file(newbedfile, sorted=True) neworder = Bed(newbedfile).order mergedbedfile = mergeBed(newbedfile, nms=True) bed = Bed(mergedbedfile) valid = 0 total_counts = Counter() F1_counts = [] bp_diff = [] novelbedfile = "novel.bed" fw = open(novelbedfile, "w") for b in bed: accns = b.accn.split(',') pfs_accns = [x.split("-")[0] for x in accns] pfs_counts = Counter(pfs_accns) if len(pfs_counts) != 3: print >> fw, b continue valid += 1 total_counts += pfs_counts F1_counts.append(pfs_counts[F1]) # Collect breakpoint positions between P1 and F1 P1_accns = [x for x in accns if x.split("-")[0] == P1] F1_accns = [x for x in accns if x.split("-")[0] == F1] if len(P1_accns) != 1: continue ri, ref = neworder[P1_accns[0]] P1_accns = [neworder[x][-1] for x in F1_accns] bp_diff.extend(x.start - ref.start for x in P1_accns) bp_diff.extend(x.end - ref.end for x in P1_accns) print >> sys.stderr, \ "A total of {0} sites show consistent deletions across samples.".\ format(percentage(valid, len(bed))) for pf, count in total_counts.items(): print >> sys.stderr, "{0:>9}: {1:.2f} deletions/site".\ format(pf, count * 1. / valid) F1_counts = Counter(F1_counts) # Plot the IES variant number diversity from jcvi.graphics.base import plt, savefig, set_ticklabels_helvetica fig = plt.figure(1, (iopts.w, iopts.h)) if opts.diversity == "variant": left, height = zip(*sorted(F1_counts.items())) for l, h in zip(left, height): print >> sys.stderr, "{0:>9} variants: {1}".format(l, h) plt.text(l, h + 5, str(h), color="darkslategray", size=8, ha="center", va="bottom", rotation=90) plt.bar(left, height, align="center") plt.xlabel("Identified number of IES per site") plt.ylabel("Counts") plt.title("IES variation in progeny pool") ax = plt.gca() set_ticklabels_helvetica(ax) savefig(F1 + ".counts.pdf") # Plot the IES breakpoint position diversity else: bp_diff = Counter(bp_diff) bp_diff_abs = Counter() for k, v in bp_diff.items(): bp_diff_abs[abs(k)] += v plt.figure(1, (iopts.w, iopts.h)) left, height = zip(*sorted(bp_diff_abs.items())) for l, h in zip(left, height)[:21]: plt.text(l, h + 50, str(h), color="darkslategray", size=8, ha="center", va="bottom", rotation=90) plt.bar(left, height, align="center") plt.xlabel("Progeny breakpoint relative to SB210") plt.ylabel("Counts") plt.xlim(-.5, 20.5) ax = plt.gca() set_ticklabels_helvetica(ax) savefig(F1 + ".breaks.pdf") # Serialize the data to a file fw = open("Breakpoint-offset-histogram.csv", "w") for k, v in sorted(bp_diff.items()): print >> fw, "{0},{1}".format(k, v) fw.close() total = sum(height) zeros = bp_diff[0] within_20 = sum([v for i, v in bp_diff.items() if -20 <= i <= 20]) print >> sys.stderr, "No deviation: {0}".format(percentage(zeros, total)) print >> sys.stderr, " Within 20bp: {0}".format(percentage(within_20, total))