Ejemplo n.º 1
0
    def py__getattribute__(self,
                           name_or_str,
                           name_context=None,
                           position=None,
                           analysis_errors=True):
        """
        :param position: Position of the last statement -> tuple of line, column
        """
        if name_context is None:
            name_context = self
        names = self.goto(name_or_str, position)

        string_name = name_or_str.value if isinstance(name_or_str,
                                                      Name) else name_or_str

        # This paragraph is currently needed for proper branch type inference
        # (static analysis).
        found_predefined_types = None
        if self.predefined_names and isinstance(name_or_str, Name):
            node = name_or_str
            while node is not None and not parser_utils.is_scope(node):
                node = node.parent
                if node.type in ("if_stmt", "for_stmt", "comp_for",
                                 'sync_comp_for'):
                    try:
                        name_dict = self.predefined_names[node]
                        types = name_dict[string_name]
                    except KeyError:
                        continue
                    else:
                        found_predefined_types = types
                        break
        if found_predefined_types is not None and names:
            from jedi.inference import flow_analysis
            check = flow_analysis.reachability_check(
                context=self,
                value_scope=self.tree_node,
                node=name_or_str,
            )
            if check is flow_analysis.UNREACHABLE:
                values = NO_VALUES
            else:
                values = found_predefined_types
        else:
            values = ValueSet.from_sets(name.infer() for name in names)

        if not names and not values and analysis_errors:
            if isinstance(name_or_str, Name):
                from jedi.inference import analysis
                message = ("NameError: name '%s' is not defined." %
                           string_name)
                analysis.add(name_context, 'name-error', name_or_str, message)

        debug.dbg('context.names_to_types: %s -> %s', names, values)
        if values:
            return values
        return self._check_for_additional_knowledge(name_or_str, name_context,
                                                    position)
Ejemplo n.º 2
0
 def py__iter__(self, contextualized_node=None):
     if contextualized_node is not None:
         from jedi.inference import analysis
         analysis.add(contextualized_node.context,
                      'type-error-not-iterable',
                      contextualized_node.node,
                      message="TypeError: '%s' object is not iterable" %
                      self)
     return iter([])
Ejemplo n.º 3
0
 def py__getitem__(self, index_value_set, contextualized_node):
     from jedi.inference import analysis
     # TODO this value is probably not right.
     analysis.add(contextualized_node.context,
                  'type-error-not-subscriptable',
                  contextualized_node.node,
                  message="TypeError: '%s' object is not subscriptable" %
                  self)
     return NO_VALUES
Ejemplo n.º 4
0
def _iterate_star_args(context, array, input_node, funcdef=None):
    if not array.py__getattribute__('__iter__'):
        if funcdef is not None:
            # TODO this funcdef should not be needed.
            m = "TypeError: %s() argument after * must be a sequence, not %s" \
                % (funcdef.name.value, array)
            analysis.add(context, 'type-error-star', input_node, message=m)
    try:
        iter_ = array.py__iter__
    except AttributeError:
        pass
    else:
        yield from iter_()
Ejemplo n.º 5
0
def _star_star_dict(context, array, input_node, funcdef):
    from jedi.inference.value.instance import CompiledInstance
    if isinstance(array, CompiledInstance) and array.name.string_name == 'dict':
        # For now ignore this case. In the future add proper iterators and just
        # make one call without crazy isinstance checks.
        return {}
    elif isinstance(array, iterable.Sequence) and array.array_type == 'dict':
        return array.exact_key_items()
    else:
        if funcdef is not None:
            m = "TypeError: %s argument after ** must be a mapping, not %s" \
                % (funcdef.name.value, array)
            analysis.add(context, 'type-error-star-star', input_node, message=m)
        return {}
Ejemplo n.º 6
0
def unpack_tuple_to_dict(value, types, exprlist):
    """
    Unpacking tuple assignments in for statements and expr_stmts.
    """
    if exprlist.type == 'name':
        return {exprlist.value: types}
    elif exprlist.type == 'atom' and exprlist.children[0] in ('(', '['):
        return unpack_tuple_to_dict(value, types, exprlist.children[1])
    elif exprlist.type in ('testlist', 'testlist_comp', 'exprlist',
                           'testlist_star_expr'):
        dct = {}
        parts = iter(exprlist.children[::2])
        n = 0
        for lazy_value in types.iterate(exprlist):
            n += 1
            try:
                part = next(parts)
            except StopIteration:
                # TODO this value is probably not right.
                analysis.add(
                    value,
                    'value-error-too-many-values',
                    part,
                    message=
                    "ValueError: too many values to unpack (expected %s)" % n)
            else:
                dct.update(
                    unpack_tuple_to_dict(value, lazy_value.infer(), part))
        has_parts = next(parts, None)
        if types and has_parts is not None:
            # TODO this value is probably not right.
            analysis.add(
                value,
                'value-error-too-few-values',
                has_parts,
                message="ValueError: need more than %s values to unpack" % n)
        return dct
    elif exprlist.type == 'power' or exprlist.type == 'atom_expr':
        # Something like ``arr[x], var = ...``.
        # This is something that is not yet supported, would also be difficult
        # to write into a dict.
        return {}
    elif exprlist.type == 'star_expr':  # `a, *b, c = x` type unpackings
        # Currently we're not supporting them.
        return {}
    raise NotImplementedError
Ejemplo n.º 7
0
def builtins_isinstance(objects, types, arguments, inference_state):
    bool_results = set()
    for o in objects:
        cls = o.py__class__()
        try:
            cls.py__bases__
        except AttributeError:
            # This is temporary. Everything should have a class attribute in
            # Python?! Maybe we'll leave it here, because some numpy objects or
            # whatever might not.
            bool_results = set([True, False])
            break

        mro = list(cls.py__mro__())

        for cls_or_tup in types:
            if cls_or_tup.is_class():
                bool_results.add(cls_or_tup in mro)
            elif cls_or_tup.name.string_name == 'tuple' \
                    and cls_or_tup.get_root_context().is_builtins_module():
                # Check for tuples.
                classes = ValueSet.from_sets(
                    lazy_value.infer()
                    for lazy_value in cls_or_tup.iterate()
                )
                bool_results.add(any(cls in mro for cls in classes))
            else:
                _, lazy_value = list(arguments.unpack())[1]
                if isinstance(lazy_value, LazyTreeValue):
                    node = lazy_value.data
                    message = 'TypeError: isinstance() arg 2 must be a ' \
                              'class, type, or tuple of classes and types, ' \
                              'not %s.' % cls_or_tup
                    analysis.add(lazy_value.context, 'type-error-isinstance', node, message)

    return ValueSet(
        compiled.builtin_from_name(inference_state, str(b))
        for b in bool_results
    )
Ejemplo n.º 8
0
def _infer_comparison_part(inference_state, context, left, operator, right):
    l_is_num = is_number(left)
    r_is_num = is_number(right)
    if isinstance(operator, str):
        str_operator = operator
    else:
        str_operator = str(operator.value)

    if str_operator == '*':
        # for iterables, ignore * operations
        if isinstance(left, iterable.Sequence) or is_string(left):
            return ValueSet([left])
        elif isinstance(right, iterable.Sequence) or is_string(right):
            return ValueSet([right])
    elif str_operator == '+':
        if l_is_num and r_is_num or is_string(left) and is_string(right):
            return left.execute_operation(right, str_operator)
        elif _is_list(left) and _is_list(right) or _is_tuple(
                left) and _is_tuple(right):
            return ValueSet(
                [iterable.MergedArray(inference_state, (left, right))])
    elif str_operator == '-':
        if l_is_num and r_is_num:
            return left.execute_operation(right, str_operator)
    elif str_operator == '%':
        # With strings and numbers the left type typically remains. Except for
        # `int() % float()`.
        return ValueSet([left])
    elif str_operator in COMPARISON_OPERATORS:
        if left.is_compiled() and right.is_compiled():
            # Possible, because the return is not an option. Just compare.
            result = left.execute_operation(right, str_operator)
            if result:
                return result
        else:
            if str_operator in ('is', '!=', '==', 'is not'):
                operation = COMPARISON_OPERATORS[str_operator]
                bool_ = operation(left, right)
                # Only if == returns True or != returns False, we can continue.
                # There's no guarantee that they are not equal. This can help
                # in some cases, but does not cover everything.
                if (str_operator in ('is', '==')) == bool_:
                    return ValueSet([_bool_to_value(inference_state, bool_)])

            if isinstance(left, VersionInfo):
                version_info = _get_tuple_ints(right)
                if version_info is not None:
                    bool_result = compiled.access.COMPARISON_OPERATORS[
                        operator](inference_state.environment.version_info,
                                  tuple(version_info))
                    return ValueSet(
                        [_bool_to_value(inference_state, bool_result)])

        return ValueSet([
            _bool_to_value(inference_state, True),
            _bool_to_value(inference_state, False)
        ])
    elif str_operator in ('in', 'not in'):
        return NO_VALUES

    def check(obj):
        """Checks if a Jedi object is either a float or an int."""
        return isinstance(obj, TreeInstance) and \
            obj.name.string_name in ('int', 'float')

    # Static analysis, one is a number, the other one is not.
    if str_operator in ('+', '-') and l_is_num != r_is_num \
            and not (check(left) or check(right)):
        message = "TypeError: unsupported operand type(s) for +: %s and %s"
        analysis.add(context, 'type-error-operation', operator,
                     message % (left, right))

    if left.is_class() or right.is_class():
        return NO_VALUES

    method_name = operator_to_magic_method[str_operator]
    magic_methods = left.py__getattribute__(method_name)
    if magic_methods:
        result = magic_methods.execute_with_values(right)
        if result:
            return result

    if not magic_methods:
        reverse_method_name = reverse_operator_to_magic_method[str_operator]
        magic_methods = right.py__getattribute__(reverse_method_name)

        result = magic_methods.execute_with_values(left)
        if result:
            return result

    result = ValueSet([left, right])
    debug.dbg('Used operator %s resulting in %s', operator, result)
    return result
Ejemplo n.º 9
0
def _add_error(value, name, message):
    if hasattr(name, 'parent') and value is not None:
        analysis.add(value, 'import-error', name, message)
    else:
        debug.warning('ImportError without origin: ' + message)
def _infer_comparison_part(inference_state, context, left, operator, right):
    l_is_num = is_number(left)
    r_is_num = is_number(right)
    if isinstance(operator, unicode):
        str_operator = operator
    else:
        str_operator = force_unicode(str(operator.value))

    if str_operator == '*':
        # for iterables, ignore * operations
        if isinstance(left, iterable.Sequence) or is_string(left):
            return ValueSet([left])
        elif isinstance(right, iterable.Sequence) or is_string(right):
            return ValueSet([right])
    elif str_operator == '+':
        if l_is_num and r_is_num or is_string(left) and is_string(right):
            return ValueSet([left.execute_operation(right, str_operator)])
        elif _is_tuple(left) and _is_tuple(right) or _is_list(
                left) and _is_list(right):
            return ValueSet(
                [iterable.MergedArray(inference_state, (left, right))])
    elif str_operator == '-':
        if l_is_num and r_is_num:
            return ValueSet([left.execute_operation(right, str_operator)])
    elif str_operator == '%':
        # With strings and numbers the left type typically remains. Except for
        # `int() % float()`.
        return ValueSet([left])
    elif str_operator in COMPARISON_OPERATORS:
        if left.is_compiled() and right.is_compiled():
            # Possible, because the return is not an option. Just compare.
            try:
                return ValueSet([left.execute_operation(right, str_operator)])
            except TypeError:
                # Could be True or False.
                pass
        else:
            if str_operator in ('is', '!=', '==', 'is not'):
                operation = COMPARISON_OPERATORS[str_operator]
                bool_ = operation(left, right)
                return ValueSet([_bool_to_value(inference_state, bool_)])

            if isinstance(left, VersionInfo):
                version_info = _get_tuple_ints(right)
                if version_info is not None:
                    bool_result = compiled.access.COMPARISON_OPERATORS[
                        operator](inference_state.environment.version_info,
                                  tuple(version_info))
                    return ValueSet(
                        [_bool_to_value(inference_state, bool_result)])

        return ValueSet([
            _bool_to_value(inference_state, True),
            _bool_to_value(inference_state, False)
        ])
    elif str_operator == 'in':
        return NO_VALUES

    def check(obj):
        """Checks if a Jedi object is either a float or an int."""
        return isinstance(obj, TreeInstance) and \
            obj.name.string_name in ('int', 'float')

    # Static analysis, one is a number, the other one is not.
    if str_operator in ('+', '-') and l_is_num != r_is_num \
            and not (check(left) or check(right)):
        message = "TypeError: unsupported operand type(s) for +: %s and %s"
        analysis.add(context, 'type-error-operation', operator,
                     message % (left, right))

    result = ValueSet([left, right])
    debug.dbg('Used operator %s resulting in %s', operator, result)
    return result
Ejemplo n.º 11
0
def get_executed_param_names_and_issues(function_value, arguments):
    """
    Return a tuple of:
      - a list of `ExecutedParamName`s corresponding to the arguments of the
        function execution `function_value`, containing the inferred value of
        those arguments (whether explicit or default)
      - a list of the issues encountered while building that list

    For example, given:
    ```
    def foo(a, b, c=None, d='d'): ...

    foo(42, c='c')
    ```

    Then for the execution of `foo`, this will return a tuple containing:
      - a list with entries for each parameter a, b, c & d; the entries for a,
        c, & d will have their values (42, 'c' and 'd' respectively) included.
      - a list with a single entry about the lack of a value for `b`
    """
    def too_many_args(argument):
        m = _error_argument_count(funcdef, len(unpacked_va))
        # Just report an error for the first param that is not needed (like
        # cPython).
        if arguments.get_calling_nodes():
            # There might not be a valid calling node so check for that first.
            issues.append(
                _add_argument_issue('type-error-too-many-arguments',
                                    argument,
                                    message=m))
        else:
            issues.append(None)
            debug.warning('non-public warning: %s', m)

    issues = []  # List[Optional[analysis issue]]
    result_params = []
    param_dict = {}
    funcdef = function_value.tree_node
    # Default params are part of the value where the function was defined.
    # This means that they might have access on class variables that the
    # function itself doesn't have.
    default_param_context = function_value.get_default_param_context()

    for param in funcdef.get_params():
        param_dict[param.name.value] = param
    unpacked_va = list(arguments.unpack(funcdef))
    var_arg_iterator = PushBackIterator(iter(unpacked_va))

    non_matching_keys = defaultdict(lambda: [])
    keys_used = {}
    keys_only = False
    had_multiple_value_error = False
    for param in funcdef.get_params():
        # The value and key can both be null. There, the defaults apply.
        # args / kwargs will just be empty arrays / dicts, respectively.
        # Wrong value count is just ignored. If you try to test cases that are
        # not allowed in Python, Jedi will maybe not show any completions.
        is_default = False
        key, argument = next(var_arg_iterator, (None, None))
        while key is not None:
            keys_only = True
            try:
                key_param = param_dict[key]
            except KeyError:
                non_matching_keys[key] = argument
            else:
                if key in keys_used:
                    had_multiple_value_error = True
                    m = (
                        "TypeError: %s() got multiple values for keyword argument '%s'."
                        % (funcdef.name, key))
                    for contextualized_node in arguments.get_calling_nodes():
                        issues.append(
                            analysis.add(contextualized_node.context,
                                         'type-error-multiple-values',
                                         contextualized_node.node,
                                         message=m))
                else:
                    keys_used[key] = ExecutedParamName(function_value,
                                                       arguments, key_param,
                                                       argument)
            key, argument = next(var_arg_iterator, (None, None))

        try:
            result_params.append(keys_used[param.name.value])
            continue
        except KeyError:
            pass

        if param.star_count == 1:
            # *args param
            lazy_value_list = []
            if argument is not None:
                lazy_value_list.append(argument)
                for key, argument in var_arg_iterator:
                    # Iterate until a key argument is found.
                    if key:
                        var_arg_iterator.push_back((key, argument))
                        break
                    lazy_value_list.append(argument)
            seq = iterable.FakeTuple(function_value.inference_state,
                                     lazy_value_list)
            result_arg = LazyKnownValue(seq)
        elif param.star_count == 2:
            if argument is not None:
                too_many_args(argument)
            # **kwargs param
            dct = iterable.FakeDict(function_value.inference_state,
                                    dict(non_matching_keys))
            result_arg = LazyKnownValue(dct)
            non_matching_keys = {}
        else:
            # normal param
            if argument is None:
                # No value: Return an empty container
                if param.default is None:
                    result_arg = LazyUnknownValue()
                    if not keys_only:
                        for contextualized_node in arguments.get_calling_nodes(
                        ):
                            m = _error_argument_count(funcdef,
                                                      len(unpacked_va))
                            issues.append(
                                analysis.add(
                                    contextualized_node.context,
                                    'type-error-too-few-arguments',
                                    contextualized_node.node,
                                    message=m,
                                ))
                else:
                    result_arg = LazyTreeValue(default_param_context,
                                               param.default)
                    is_default = True
            else:
                result_arg = argument

        result_params.append(
            ExecutedParamName(function_value,
                              arguments,
                              param,
                              result_arg,
                              is_default=is_default))
        if not isinstance(result_arg, LazyUnknownValue):
            keys_used[param.name.value] = result_params[-1]

    if keys_only:
        # All arguments should be handed over to the next function. It's not
        # about the values inside, it's about the names. Jedi needs to now that
        # there's nothing to find for certain names.
        for k in set(param_dict) - set(keys_used):
            param = param_dict[k]

            if not (non_matching_keys or had_multiple_value_error
                    or param.star_count or param.default):
                # add a warning only if there's not another one.
                for contextualized_node in arguments.get_calling_nodes():
                    m = _error_argument_count(funcdef, len(unpacked_va))
                    issues.append(
                        analysis.add(contextualized_node.context,
                                     'type-error-too-few-arguments',
                                     contextualized_node.node,
                                     message=m))

    for key, lazy_value in non_matching_keys.items():
        m = "TypeError: %s() got an unexpected keyword argument '%s'." \
            % (funcdef.name, key)
        issues.append(
            _add_argument_issue('type-error-keyword-argument',
                                lazy_value,
                                message=m))

    remaining_arguments = list(var_arg_iterator)
    if remaining_arguments:
        first_key, lazy_value = remaining_arguments[0]
        too_many_args(lazy_value)
    return result_params, issues
Ejemplo n.º 12
0
def _add_argument_issue(error_name, lazy_value, message):
    if isinstance(lazy_value, LazyTreeValue):
        node = lazy_value.data
        if node.parent.type == 'argument':
            node = node.parent
        return analysis.add(lazy_value.context, error_name, node, message)