Ejemplo n.º 1
0
def zscore(candles: np.ndarray,
           period: int = 14,
           matype: int = 0,
           nbdev: float = 1,
           devtype: int = 0,
           source_type: str = "close",
           sequential: bool = False) -> Union[float, np.ndarray]:
    """
    zScore

    :param candles: np.ndarray
    :param period: int - default: 14
    :param matype: int - default: 0
    :param nbdev: float - default: 1
    :param devtype: int - default: 0
    :param source_type: str - default: "close"
    :param sequential: bool - default: False

    :return: float | np.ndarray
    """
    candles = slice_candles(candles, sequential)

    source = get_candle_source(candles, source_type=source_type)
    means = ma(source, period=period, matype=matype, sequential=True)

    if devtype == 0:
        sigmas = talib.STDDEV(source, period) * nbdev
    elif devtype == 1:
        sigmas = mean_ad(source, period, sequential=True) * nbdev
    elif devtype == 2:
        sigmas = median_ad(source, period, sequential=True) * nbdev

    zScores = (source - means) / sigmas

    return zScores if sequential else zScores[-1]
Ejemplo n.º 2
0
def vlma(candles: np.ndarray,
         min_period: int = 5,
         max_period: int = 50,
         matype: int = 0,
         devtype: int = 0,
         source_type: str = "close",
         sequential: bool = False) -> Union[float, np.ndarray]:
    """
    Variable Length Moving Average

    :param candles: np.ndarray
    :param min_period: int - default: 5
    :param max_period: int - default: 50
    :param matype: int - default: 0
    :param devtype: int - default: 0
    :param source_type: str - default: "close"
    :param sequential: bool - default: False

    :return: float | np.ndarray
    """

    # Accept normal array too.
    if len(candles.shape) == 1:
        source = candles
    else:
        candles = slice_candles(candles, sequential)
        source = get_candle_source(candles, source_type=source_type)

    mean = ma(source, period=max_period, matype=matype, sequential=True)

    if devtype == 0:
        stdDev = talib.STDDEV(source, max_period)
    elif devtype == 1:
        stdDev = mean_ad(source, max_period, sequential=True)
    elif devtype == 2:
        stdDev = median_ad(source, max_period, sequential=True)

    a = mean - (1.75 * stdDev)
    b = mean - (0.25 * stdDev)
    c = mean + (0.25 * stdDev)
    d = mean + (1.75 * stdDev)

    res = vlma_fast(source, a, b, c, d, min_period, max_period)

    return res if sequential else res[-1]
Ejemplo n.º 3
0
def devstop(candles: np.ndarray,
            period: int = 20,
            mult: float = 0,
            devtype: int = 0,
            direction: str = "long",
            sequential: bool = False) -> Union[float, np.ndarray]:
    """
    Kase Dev Stops

    :param candles: np.ndarray
    :param period: int - default: 20
    :param mult: float - default: 0
    :param devtype: int - default: 0
    :param direction: str - default: long
    :param sequential: bool - default: False

    :return: float | np.ndarray
    """
    candles = slice_candles(candles, sequential)

    high = candles[:, 3]
    low = candles[:, 4]

    AVTR = talib.SMA(talib.MAX(high, 2) - talib.MIN(low, 2), period)

    if devtype == 0:
        SD = talib.STDDEV(talib.MAX(high, 2) - talib.MIN(low, 2), period)
    elif devtype == 1:
        SD = mean_ad(talib.MAX(high, 2) - talib.MIN(low, 2),
                     period,
                     sequential=True)
    elif devtype == 2:
        SD = median_ad(talib.MAX(high, 2) - talib.MIN(low, 2),
                       period,
                       sequential=True)

    if direction == "long":
        res = talib.MAX(high - AVTR - mult * SD, period)
    else:
        res = talib.MIN(low + AVTR + mult * SD, period)

    return res if sequential else res[-1]
Ejemplo n.º 4
0
def bollinger_bands_width(
        candles: np.ndarray,
        period: int = 20,
        devup: float = 2,
        devdn: float = 2,
        matype: int = 0,
        devtype: int = 0,
        source_type: str = "close",
        sequential: bool = False) -> Union[float, np.ndarray]:
    """
    BBW - Bollinger Bands Width - Bollinger Bands Bandwidth

    :param candles: np.ndarray
    :param period: int - default: 20
    :param devup: float - default: 2
    :param devdn: float - default: 2
    :param matype: int - default: 0
    :param devtype: int - default: 0
    :param source_type: str - default: "close"
    :param sequential: bool - default: False

    :return: BollingerBands(upperband, middleband, lowerband)
    """
    candles = slice_candles(candles, sequential)

    source = get_candle_source(candles, source_type=source_type)

    if devtype == 0:
        dev = talib.STDDEV(source, period)
    elif devtype == 1:
        dev = mean_ad(source, period, sequential=True)
    elif devtype == 2:
        dev = median_ad(source, period, sequential=True)

    middlebands = ma(source, period=period, matype=matype, sequential=True)
    upperbands = middlebands + devup * dev
    lowerbands = middlebands - devdn * dev

    if sequential:
        return (upperbands - lowerbands) / middlebands
    else:
        return (upperbands[-1] - lowerbands[-1]) / middlebands[-1]
Ejemplo n.º 5
0
def rvi(candles: np.ndarray,
        period: int = 10,
        ma_len: int = 14,
        matype: int = 1,
        devtype: int = 0,
        source_type: str = "close",
        sequential: bool = False) -> Union[float, np.ndarray]:
    """
    RVI - Relative Volatility Index
    :param candles: np.ndarray
    :param period: int - default: 10
    :param ma_len: int - default: 14
    :param matype: int - default: 1
    :param source_type: str - default: "close"
    :param sequential: bool - default=False
    :return: float | np.ndarray
    """
    candles = slice_candles(candles, sequential)

    source = get_candle_source(candles, source_type=source_type)

    if devtype == 0:
        dev = talib.STDDEV(source, period)
    elif devtype == 1:
        dev = mean_ad(source, period, sequential=True)
    elif devtype == 2:
        dev = median_ad(source, period, sequential=True)

    diff = np.diff(source)
    diff = same_length(source, diff)

    up = np.nan_to_num(np.where(diff <= 0, 0, dev))
    down = np.nan_to_num(np.where(diff > 0, 0, dev))

    up_avg = ma(up, period=ma_len, matype=matype, sequential=True)
    down_avg = ma(down, period=ma_len, matype=matype, sequential=True)

    result = 100 * (up_avg / (up_avg + down_avg))

    return result if sequential else result[-1]