def configure_experiment(problems: dict, n_run: int): jobs = [] max_evaluations = 25000 for run in range(n_run): for problem_tag, problem in problems.items(): jobs.append( Job( algorithm=NSGAII( problem=problem, population_size=100, offspring_population_size=100, mutation=PolynomialMutation( probability=1.0 / problem.number_of_variables, distribution_index=20), crossover=SBXCrossover(probability=1.0, distribution_index=20), termination_criterion=StoppingByEvaluations( max_evaluations=max_evaluations), ), algorithm_tag="NSGAII", problem_tag=problem_tag, run=run, )) jobs.append( Job( algorithm=GDE3( problem=problem, population_size=100, cr=0.5, f=0.5, termination_criterion=StoppingByEvaluations( max_evaluations=max_evaluations), ), algorithm_tag="GDE3", problem_tag=problem_tag, run=run, )) jobs.append( Job( algorithm=SMPSO( problem=problem, swarm_size=100, mutation=PolynomialMutation( probability=1.0 / problem.number_of_variables, distribution_index=20), leaders=CrowdingDistanceArchive(100), termination_criterion=StoppingByEvaluations( max_evaluations=max_evaluations), ), algorithm_tag="SMPSO", problem_tag=problem_tag, run=run, )) return jobs
def configure_experiment(problems: dict, n_run: int): jobs = [] for run in range(n_run): for problem_tag, problem in problems.items(): jobs.append( Job( algorithm=NSGAII( problem=problem, population_size=20, offspring_population_size=20, mutation=IntegerPolynomialMutation(probability=0.05, distribution_index=20), crossover=IntegerSBXCrossover(probability=0.3, distribution_index=20), # termination_criterion=StoppingByEvaluations(max_evaluations=max_evaluations) termination_criterion=stopCriterion ), algorithm_tag='NSGAII', problem_tag=problem_tag, run=run, ) ) jobs.append( Job( algorithm=SPEA2( problem=problem, population_size=20, offspring_population_size=20, mutation=IntegerPolynomialMutation(probability=0.05, distribution_index=20), crossover=IntegerSBXCrossover(probability=0.3, distribution_index=20), termination_criterion=StoppingByEvaluations(max_evaluations=max_evaluations) ), algorithm_tag='SPEA2', problem_tag=problem_tag, run=run, ) ) return jobs
def configure_experiment(problems: dict, n_run: int): jobs = [] max_evaluations = 25000 for run in range(n_run): for problem_tag, problem in problems.items(): jobs.append( Job( algorithm=DynamicNSGAII( problem=problem, population_size=100, offspring_population_size=100, mutation=PolynomialMutation(probability=1.0 / problem.number_of_variables, distribution_index=20), crossover=SBXCrossover(probability=1.0, distribution_index=20), termination_criterion=StoppingByEvaluations(max_evaluations=max_evaluations) ), algorithm_tag='DynamicNSGAII', problem_tag=problem_tag, run=run, ) ) return jobs
def configure_experiment(problems: dict, n_run: int): """Configures the experiments Args: problems (dict): The MEWpy optimization problem n_run (int): the number of runs of each MOEA Returns: a list of jobs """ from mewpy.optimization.jmetal.operators import UniformCrossoverOU, GrowMutationOU, ShrinkMutation, \ SingleMutationOU, MutationContainer crossover = UniformCrossoverOU(0.5, max_size=candidate_max_size) mutators = [] mutators.append(GrowMutationOU(1.0, max_size=candidate_max_size)) mutators.append(ShrinkMutation(1.0, min_size=candidate_max_size)) mutators.append(SingleMutationOU(1.0)) mutation = MutationContainer(0.3, mutators=mutators) jobs = [] for run in range(n_run): for problem_tag, problem in problems.items(): jobs.append( Job( algorithm=NSGAII( problem=problem, population_evaluator=MultiprocessEvaluator(N_CPU), population_size=100, offspring_population_size=100, mutation=mutation, crossover=crossover, termination_criterion=StoppingByEvaluations( max_evaluations=max_evaluations)), algorithm_tag='NSGAII', problem_tag=problem_tag, run=run, )) jobs.append( Job(algorithm=SPEA2( problem=problem, population_evaluator=MultiprocessEvaluator(N_CPU), population_size=100, offspring_population_size=100, mutation=mutation, crossover=crossover, termination_criterion=StoppingByEvaluations( max_evaluations=max_evaluations)), algorithm_tag='SPEA2', problem_tag=problem_tag, run=run)) jobs.append( Job( algorithm=IBEA( problem=problem, population_evaluator=MultiprocessEvaluator(N_CPU), kappa=1., population_size=100, offspring_population_size=100, mutation=mutation, crossover=crossover, termination_criterion=StoppingByEvaluations( max_evaluations=max_evaluations)), algorithm_tag='IBEA', problem_tag=problem_tag, run=run, )) return jobs
def configure_experiment(problems: dict, n_run: int): jobs = [] num_processes = config.num_cpu population = 10 generations = 10 max_evaluations = population * generations for run in range(n_run): for problem_tag, problem in problems.items(): reference_point = FloatSolution([0, 0], [1, 1], problem.number_of_objectives, ) reference_point.objectives = np.repeat(1, problem.number_of_objectives).tolist() jobs.append( Job( algorithm=NSGAIII( problem=problem, population_size=population, mutation=PolynomialMutation(probability=1.0 / problem.number_of_variables, distribution_index=20), crossover=SBXCrossover(probability=1.0, distribution_index=20), population_evaluator=MultiprocessEvaluator(processes=num_processes), termination_criterion=StoppingByEvaluations(max_evaluations=max_evaluations), reference_directions=UniformReferenceDirectionFactory(4, n_points=100), ), algorithm_tag='NSGAIII', problem_tag=problem_tag, run=run, ) ) jobs.append( Job( algorithm=GDE3( problem=problem, population_size=population, population_evaluator=MultiprocessEvaluator(processes=num_processes), termination_criterion=StoppingByEvaluations(max_evaluations=max_evaluations), cr=0.5, f=0.5, ), algorithm_tag='GDE3', problem_tag=problem_tag, run=run, ) ) jobs.append( Job( algorithm=SPEA2( problem=problem, population_size=population, mutation=PolynomialMutation(probability=1.0 / problem.number_of_variables, distribution_index=20), crossover=SBXCrossover(probability=1.0, distribution_index=20), population_evaluator=MultiprocessEvaluator(processes=num_processes), termination_criterion=StoppingByEvaluations(max_evaluations=max_evaluations), offspring_population_size=population, ), algorithm_tag='SPEA2', problem_tag=problem_tag, run=run, ) ) return jobs
def configure_experiment(problems: dict, n_run: int): jobs = [] for run in range(n_run): for problem_tag, problem in problems.items(): jobs.append( Job( algorithm=NSGAII( problem=problem, population_size=POPULATION_SIZE, offspring_population_size=POPULATION_SIZE, mutation=IntegerPolynomialMutation(probability=0.05, distribution_index=20), crossover=IntegerSBXCrossover(probability=0.3, distribution_index=20), termination_criterion=StoppingByEvaluationsCustom(max_evaluations=max_evaluations, reference_point=REFERENCE_POINT, AlgorithmName='NSGAII') # termination_criterion=stopCriterion ), algorithm_tag='NSGAII', problem_tag=problem_tag, run=run, ) ) jobs.append( Job( algorithm=NSGAIII( problem=problem, population_size=POPULATION_SIZE, mutation=IntegerPolynomialMutation(probability=0.05, distribution_index=20), crossover=IntegerSBXCrossover(probability=0.3, distribution_index=20), reference_directions=UniformReferenceDirectionFactory(2, n_points=91), termination_criterion=StoppingByEvaluationsCustom(max_evaluations=max_evaluations, reference_point=REFERENCE_POINT, AlgorithmName='NSGAIII') # termination_criterion=stopCriterion ), algorithm_tag='NSGAIII', problem_tag=problem_tag, run=run, ) ) jobs.append( Job( algorithm=SPEA2( problem=problem, population_size=POPULATION_SIZE, offspring_population_size=POPULATION_SIZE, mutation=IntegerPolynomialMutation(probability=0.05, distribution_index=20), crossover=IntegerSBXCrossover(probability=0.3, distribution_index=20), termination_criterion=StoppingByEvaluationsCustom(max_evaluations=max_evaluations, reference_point=REFERENCE_POINT, AlgorithmName='SPEA2') ), algorithm_tag='SPEA2', problem_tag=problem_tag, run=run, ) ) jobs.append( Job( algorithm=HYPE( problem=problem, reference_point=reference_point, population_size=POPULATION_SIZE, offspring_population_size=POPULATION_SIZE, mutation=IntegerPolynomialMutation(probability=0.05, distribution_index=20), crossover=IntegerSBXCrossover(probability=0.3, distribution_index=20), termination_criterion=StoppingByEvaluationsCustom(max_evaluations=max_evaluations, reference_point=REFERENCE_POINT, AlgorithmName='HYPE') ), algorithm_tag='HYPE', problem_tag=problem_tag, run=run, ) ) jobs.append( Job( algorithm=MOCell( problem=problem, population_size=POPULATION_SIZE, neighborhood=C9(4, 4), archive=CrowdingDistanceArchive(100), mutation=IntegerPolynomialMutation(probability=0.05, distribution_index=20), crossover=IntegerSBXCrossover(probability=0.3, distribution_index=20), termination_criterion=StoppingByEvaluationsCustom(max_evaluations=max_evaluations, reference_point=REFERENCE_POINT, AlgorithmName='MOCell') ), algorithm_tag='MOCELL', problem_tag=problem_tag, run=run, ) ) jobs.append( Job( algorithm=OMOPSO( problem=problem, swarm_size=swarm_size, epsilon=0.0075, uniform_mutation=UniformMutation(probability=0.05, perturbation=0.5), non_uniform_mutation=NonUniformMutation(mutation_probability, perturbation=0.5, max_iterations=int(max_evaluations / swarm_size)), leaders=CrowdingDistanceArchive(10), termination_criterion=StoppingByEvaluationsCustom(max_evaluations=max_evaluations, reference_point=REFERENCE_POINT, AlgorithmName='OMOPSO') ), algorithm_tag='OMOPSO', problem_tag=problem_tag, run=run, ) ) jobs.append( Job( algorithm=SMPSO( problem=problem, swarm_size=POPULATION_SIZE, mutation=PolynomialMutation(probability=0.05, distribution_index=20), leaders=CrowdingDistanceArchive(20), termination_criterion=StoppingByEvaluationsCustom(max_evaluations=max_evaluations, reference_point=REFERENCE_POINT, AlgorithmName='SMPSO') ), algorithm_tag='SMPSO', problem_tag=problem_tag, run=run, ) ) return jobs