Ejemplo n.º 1
0
    def __init__(
        self,
        problem: Problem,
        population_size: int,
        mutation: Mutation,
        crossover: Crossover,
        number_of_cores: int,
        client: Client,
        selection: Selection = BinaryTournamentSelection(
            MultiComparator([
                FastNonDominatedRanking.get_comparator(),
                CrowdingDistance.get_comparator()
            ])),
        termination_criterion: TerminationCriterion = store.
        default_termination_criteria,
        dominance_comparator: DominanceComparator = DominanceComparator()):
        super(DistributedNSGAII, self).__init__()
        self.problem = problem
        self.population_size = population_size
        self.mutation_operator = mutation
        self.crossover_operator = crossover
        self.selection_operator = selection
        self.dominance_comparator = dominance_comparator

        self.termination_criterion = termination_criterion
        self.observable.register(termination_criterion)

        self.number_of_cores = number_of_cores
        self.client = client
Ejemplo n.º 2
0
 def __init__(
     self,
     problem: DynamicProblem[S],
     population_size: int,
     offspring_population_size: int,
     mutation: Mutation,
     crossover: Crossover,
     selection: Selection = BinaryTournamentSelection(
         MultiComparator([
             FastNonDominatedRanking.get_comparator(),
             CrowdingDistance.get_comparator()
         ])),
     termination_criterion: TerminationCriterion = store.
     default_termination_criteria,
     population_generator: Generator = store.default_generator,
     population_evaluator: Evaluator = store.default_evaluator,
     dominance_comparator: DominanceComparator = DominanceComparator()):
     super(DynamicNSGAII, self).__init__(
         problem=problem,
         population_size=population_size,
         offspring_population_size=offspring_population_size,
         mutation=mutation,
         crossover=crossover,
         selection=selection,
         population_evaluator=population_evaluator,
         population_generator=population_generator,
         termination_criterion=termination_criterion,
         dominance_comparator=dominance_comparator)
     self.completed_iterations = 0
     self.start_computing_time = 0
     self.total_computing_time = 0
Ejemplo n.º 3
0
 def __init__(self,
              max_population_size: int,
              reference_point: S,
              dominance_comparator: Comparator = DominanceComparator()):
     super(RankingAndFitnessSelection, self).__init__()
     self.max_population_size = max_population_size
     self.dominance_comparator = dominance_comparator
     self.reference_point = reference_point
Ejemplo n.º 4
0
    def __init__(self,
                 problem: FloatProblem,
                 swarm_size: int,
                 uniform_mutation: UniformMutation,
                 non_uniform_mutation: NonUniformMutation,
                 leaders: Optional[BoundedArchive],
                 epsilon: float,
                 termination_criterion: TerminationCriterion,
                 swarm_generator: Generator = store.default_generator,
                 swarm_evaluator: Evaluator = store.default_evaluator):
        """ This class implements the OMOPSO algorithm as described in

        todo Update this reference
        * SMPSO: A new PSO-based metaheuristic for multi-objective optimization

        The implementation of OMOPSO provided in jMetalPy follows the algorithm template described in the algorithm
        templates section of the documentation.

        :param problem: The problem to solve.
        :param swarm_size: Size of the swarm.
        :param leaders: Archive for leaders.
        """
        super(OMOPSO, self).__init__(problem=problem, swarm_size=swarm_size)
        self.swarm_generator = swarm_generator
        self.swarm_evaluator = swarm_evaluator

        self.termination_criterion = termination_criterion
        self.observable.register(termination_criterion)

        self.uniform_mutation = uniform_mutation
        self.non_uniform_mutation = non_uniform_mutation

        self.leaders = leaders

        self.epsilon = epsilon
        self.epsilon_archive = NonDominatedSolutionListArchive(
            EpsilonDominanceComparator(epsilon))

        self.c1_min = 1.5
        self.c1_max = 2.0
        self.c2_min = 1.5
        self.c2_max = 2.0
        self.r1_min = 0.0
        self.r1_max = 1.0
        self.r2_min = 0.0
        self.r2_max = 1.0
        self.weight_min = 0.1
        self.weight_max = 0.5
        self.change_velocity1 = -1
        self.change_velocity2 = -1

        self.dominance_comparator = DominanceComparator()

        self.speed = numpy.zeros(
            (self.swarm_size, self.problem.number_of_variables), dtype=float)
Ejemplo n.º 5
0
    def execute(self, front: List[S]) -> S:
        if front is None:
            raise Exception('The front is null')
        elif len(front) == 0:
            raise Exception('The front is empty')

        result = front[0]

        for solution in front[1:]:
            if DominanceComparator().compare(solution, result) < 0:
                result = solution

        return result
Ejemplo n.º 6
0
    def __init__(self,
                 problem: FloatProblem,
                 swarm_size: int,
                 mutation: Mutation,
                 leaders: Optional[BoundedArchive],
                 termination_criterion: TerminationCriterion = store.
                 default_termination_criteria,
                 swarm_generator: Generator = store.default_generator,
                 swarm_evaluator: Evaluator = store.default_evaluator):
        """ This class implements the SMPSO algorithm as described in

        * SMPSO: A new PSO-based metaheuristic for multi-objective optimization
        * MCDM 2009. DOI: `<http://dx.doi.org/10.1109/MCDM.2009.4938830/>`_.

        The implementation of SMPSO provided in jMetalPy follows the algorithm template described in the algorithm
        templates section of the documentation.

        :param problem: The problem to solve.
        :param swarm_size: Size of the swarm.
        :param max_evaluations: Maximum number of evaluations/iterations.
        :param mutation: Mutation operator (see :py:mod:`jmetal.operator.mutation`).
        :param leaders: Archive for leaders.
        """
        super(SMPSO, self).__init__(problem=problem, swarm_size=swarm_size)
        self.swarm_generator = swarm_generator
        self.swarm_evaluator = swarm_evaluator
        self.termination_criterion = termination_criterion
        self.observable.register(termination_criterion)
        self.mutation_operator = mutation
        self.leaders = leaders

        self.c1_min = 1.5
        self.c1_max = 2.5
        self.c2_min = 1.5
        self.c2_max = 2.5
        self.r1_min = 0.0
        self.r1_max = 1.0
        self.r2_min = 0.0
        self.r2_max = 1.0
        self.min_weight = 0.1
        self.max_weight = 0.1
        self.change_velocity1 = -1
        self.change_velocity2 = -1

        self.dominance_comparator = DominanceComparator()

        self.speed = numpy.zeros(
            (self.swarm_size, self.problem.number_of_variables), dtype=float)
        self.delta_max, self.delta_min = numpy.empty(problem.number_of_variables), \
                                         numpy.empty(problem.number_of_variables)
Ejemplo n.º 7
0
    def __init__(self,
                 problem: DynamicProblem,
                 population_size: int,
                 cr: float,
                 f: float,
                 termination_criterion: TerminationCriterion,
                 k: float = 0.5,
                 population_generator: Generator = store.default_generator,
                 population_evaluator: Evaluator = store.default_evaluator,
                 dominance_comparator: Comparator = DominanceComparator()):
        super(DynamicGDE3,
              self).__init__(problem, population_size, cr, f,
                             termination_criterion, k, population_generator,
                             population_evaluator, dominance_comparator)

        self.completed_iterations = 0
Ejemplo n.º 8
0
 def default_comparator(self):
     return DominanceComparator()
Ejemplo n.º 9
0
    def configurar_algoritmo(self,
                             hora_show: datetime,
                             hora_minima: datetime = datetime.time(0, 0),
                             algoritmo: str = 'MOGA',
                             mutation_probability: float = 0.25,
                             max_evaluations: int = 500,
                             population: int = 100):
        hora_minima, hora_show = self.restricciones_hora(
            hora_minima, hora_show)
        if (hora_minima == 0):
            hora_minima = hora_show - 180
        restricciones_baja = list([hora_minima, -100, -100, 0, 0])
        restricciones_alta = list([hora_show, 0, 0, 100, 100])

        self.problem = HVAC(lower_bound=restricciones_baja,
                            upper_bound=restricciones_alta,
                            number_of_configurations=3)

        print("algoritmo: ", algoritmo)
        if algoritmo == 'MOGA':
            algorithm = MOGA(problem=self.problem,
                             population_size=population,
                             offspring_population_size=population,
                             mutation=IntegerPolynomialMutationD(
                                 probability=mutation_probability,
                                 distribution_index=20),
                             crossover=SBXCrossoverD(
                                 probability=mutation_probability,
                                 distribution_index=20),
                             termination_criterion=StoppingByEvaluations(
                                 max=max_evaluations),
                             dominance_comparator=DominanceComparator())

        elif algoritmo == "NSGAII":
            algorithm = NSGAII(problem=self.problem,
                               population_size=population,
                               offspring_population_size=population,
                               mutation=IntegerPolynomialMutationD(
                                   probability=mutation_probability,
                                   distribution_index=20),
                               crossover=SBXCrossoverD(
                                   probability=mutation_probability,
                                   distribution_index=20),
                               termination_criterion=StoppingByEvaluations(
                                   max=max_evaluations),
                               dominance_comparator=DominanceComparator())

        elif algoritmo == 'OMOPSO':
            algorithm = OMOPSO(problem=self.problem,
                               swarm_size=population,
                               epsilon=0.0075,
                               uniform_mutation=UniformMutation(
                                   probability=mutation_probability,
                                   perturbation=0.5),
                               non_uniform_mutation=NonUniformMutation(
                                   probability=mutation_probability,
                                   perturbation=0.5),
                               leaders=CrowdingDistanceArchive(100),
                               termination_criterion=StoppingByEvaluations(
                                   max=max_evaluations))

        elif algoritmo == 'SMPSO':
            algorithm = SMPSO(problem=self.problem,
                              swarm_size=population,
                              mutation=IntegerPolynomialMutation(
                                  probability=mutation_probability,
                                  distribution_index=20),
                              leaders=CrowdingDistanceArchive(100),
                              termination_criterion=StoppingByEvaluations(
                                  max=max_evaluations))

        elif algoritmo == 'SPEA2':
            algorithm = SPEA2(problem=self.problem,
                              population_size=population,
                              offspring_population_size=population,
                              mutation=IntegerPolynomialMutationD(
                                  probability=mutation_probability,
                                  distribution_index=20),
                              crossover=SBXCrossoverD(
                                  probability=mutation_probability,
                                  distribution_index=20),
                              termination_criterion=StoppingByEvaluations(
                                  max=max_evaluations),
                              dominance_comparator=DominanceComparator())

        else:
            print("Algoritmo no válido. Creando MOGA por defecto...")
            algorithm = MOGA(problem=self.problem,
                             population_size=population,
                             offspring_population_size=population,
                             mutation=IntegerPolynomialMutationD(
                                 probability=mutation_probability,
                                 distribution_index=20),
                             crossover=SBXCrossoverD(
                                 probability=mutation_probability,
                                 distribution_index=20),
                             termination_criterion=StoppingByEvaluations(
                                 max=max_evaluations),
                             dominance_comparator=DominanceComparator())
        self.algoritmo = algorithm
        self.algoritmo.observable.register(observer=ProgressBarObserver(
            max=max_evaluations))

        return algorithm
Ejemplo n.º 10
0
 def __init__(self, comparator: Comparator = DominanceComparator()):
     super(FastNonDominatedRanking, self).__init__(comparator)
Ejemplo n.º 11
0
 def __init__(self, comparator: Comparator = DominanceComparator()):
     super(StrengthRanking, self).__init__(comparator)
Ejemplo n.º 12
0
 def __init__(self, comparator: Comparator = DominanceComparator()):
     super(Ranking, self).__init__()
     self.number_of_comparisons = 0
     self.ranked_sublists = []
     self.comparator = comparator
Ejemplo n.º 13
0
 def __init__(self, comparator: Comparator = DominanceComparator()):
     super(BinaryTournamentSelection, self).__init__()
     self.comparator = comparator
Ejemplo n.º 14
0
 def __init__(self,
              max_population_size: int,
              dominance_comparator: Comparator = DominanceComparator()):
     super(RankingAndCrowdingDistanceSelection, self).__init__()
     self.max_population_size = max_population_size
     self.dominance_comparator = dominance_comparator
Ejemplo n.º 15
0
 def __init__(self, dominance_comparator=DominanceComparator()):
     super(NonDominatedSolutionListArchive, self).__init__()
     self.comparator = dominance_comparator
Ejemplo n.º 16
0
from jmetal.util.termination_criterion import StoppingByEvaluations

if __name__ == '__main__':
    problem = Rastrigin(10)

    max_evaluations = 50000
    algorithm = NSGAII(
        problem=problem,
        population_size=100,
        offspring_population_size=100,
        mutation=PolynomialMutation(probability=1.0 /
                                    problem.number_of_variables,
                                    distribution_index=20.0),
        crossover=SBXCrossover(probability=0.9, distribution_index=20.0),
        termination_criterion=StoppingByEvaluations(max=max_evaluations),
        dominance_comparator=DominanceComparator())

    algorithm.observable.register(observer=PrintObjectivesObserver(1000))

    algorithm.run()
    front = algorithm.get_result()

    # Save results to file
    print_function_values_to_file(
        front, 'FUN.' + algorithm.get_name() + "-" + problem.get_name())
    print_variables_to_file(
        front, 'VAR.' + algorithm.get_name() + "-" + problem.get_name())

    print('Algorithm (continuous problem): ' + algorithm.get_name())
    print('Problem: ' + problem.get_name())
    print('Computing time: ' + str(algorithm.total_computing_time))
Ejemplo n.º 17
0
 def setUp(self):
     self.comparator = DominanceComparator()