Ejemplo n.º 1
0
	def filterSignalsWithProbePhasing(dfProbe,dfSignal,plot=False,title='',
														timeFWHM=timeFWHM):
		import pandas as pd
		import numpy as np
		
		dfSignalOld=dfSignal.copy()
		dfSignal=dfSignal.copy()
		def ranges(nums):
		    nums = sorted(set(nums))
		    gaps = [[s, e] for s, e in zip(nums, nums[1:]) if s+1 < e]
		    edges = iter(nums[:1] + sum(gaps, []) + nums[-1:])
		    return list(zip(edges, edges))
	
		# create Mask.  Only keep data wher probe current is < 0.  NAN elsewhere
		dfMask=pd.DataFrame(dfSignal.copy().to_numpy(),columns=['Data'])
		dfMask['time']=dfSignal.copy().index
		dfMask.Data[dfProbe.iloc[:,0].to_numpy()>0]=np.nan
		
		# add linear interpolations to fill-in NANs
		a=np.isnan(dfMask.Data.to_numpy())
		indexNan=dfMask[a].index
		rangeNan=ranges(indexNan.to_numpy())
		for i,r in enumerate(rangeNan):
			if r[0]==0:
				continue
			if r[-1]==dfMask.shape[0]-1:
				continue
			dfMask.Data.iloc[(r[0]):(r[1]+1)]=np.interp(dfMask.iloc[(r[0]):(r[1]+1)].time.to_numpy(),
								[dfMask.iloc[(r[0]-1)].time,dfMask.iloc[(r[1]+1)].time],
								[dfMask.iloc[(r[0]-1)].Data,dfMask.iloc[(r[1]+1)].Data])
								
		dfMask=dfMask.set_index('time')
		dfMask=dfMask.dropna()
		
		dfMask=_gaussianFilter_df(dfMask.copy(),timeFWHM=timeFWHM,plot=False,filterType='low')
		
		dfSignal=filterDFByTime(dfSignal.copy(),dfMask.index[0],dfMask.index[-1])
		dfResult=pd.DataFrame(dfSignal.values-dfMask.values,index=dfMask.index.to_numpy())
		if plot==True:
			fig,ax=_plt.subplots(3,sharex=True)
			ax[0].plot(dfProbe.index*1e3,dfProbe,label='Probe\nCurrent')
			ax[1].plot(dfSignalOld.index*1e3,dfSignalOld,label='Original')
			ax[1].plot(dfMask.index*1e3,dfMask,label='Offset')
			ax[2].plot(dfResult.index*1e3,dfResult,label='Result')
			_plot.finalizeSubplot( ax[0],
								   ylabel='A',
								   title=title,
							   )
			_plot.finalizeSubplot(ax[1],
							   )
			_plot.finalizeSubplot(ax[2],
							   xlabel='Time (ms)',
							   )
			_plot.finalizeFigure(fig,figSize=[6,4.5])
		
		return dfResult
Ejemplo n.º 2
0
    def makePlot():
        """ 
		Plot all relevant plots 
		"""

        fig, p1 = _plt.subplots()
        p1.plot(time * 1e3, qStar, label=r'q$^*$')
        p1.plot(time * 1e3, qStarCorrected, label=r'q$^* * 1.15$')
        _plot.finalizeSubplot(p1,
                              xlabel='Time (ms)',
                              ylabel=r'q$^*$',
                              ylim=[1, 5])
        _plot.finalizeFigure(fig, title='%s' % shotno)
Ejemplo n.º 3
0
def leastSquareModeAnalysis(	df,
								angles,
								modeNumbers=[0,-1,-2],
								timeFWHM_phaseFilter=0.1e-3,
								plot=False,
								title=''):
	"""
	Parameters
	----------
	df : pandas.core.frame.DataFrame
		Dataframe with multiple columns associated with different angles
		index = time
	angles : numpy.ndarray
		array of angles associated with the columns in df
	mode numbers : list of ints
		mode numbers to be analyzed
	timeFWHM_phaseFilter : float
		timewidth associated with pre-frequency calculating low-pass filter
		
	Returns
	-------
	dfResults : pandas.core.frame.DataFrame
		output
	
	Examples
	--------
	::
		
		import hbtepLib as hbt
		df,dfRaw,dfMeta=hbt.get.taData_df(100000)
		angles=dfMeta.Phi.values
		dfResults=leastSquareModeAnalysis(	df*1e4,
											angles,
											[0,-1,-2])
		dfResults.plot()
	"""
	
	# initialize
	n=len(angles)
	m=len(modeNumbers)*2
	if 0 in modeNumbers:
		m-=1
		
	# construct A matrix
	A=_np.zeros((n,m))
	i=0
	for mode in modeNumbers:
		if mode == 0:
			A[:,i]=1
			i+=1
		else:
			A[:,i]=_np.sin(mode*angles)
			A[:,i+1]=_np.cos(mode*angles)
			i+=2
	Ainv=_np.linalg.pinv(A)
	
	# perform least squares analysis	
	x=Ainv.dot(df.transpose().values)
	
	# calculate amplitudes, phases, frequencies, etc.
	dfResults=_pd.DataFrame(index=df.index)
	i=0
	for mode in modeNumbers:
		if mode == 0:
			dfResults['0']=x[i,:]
			i+=1
		else:
			dfResults['%dSin'%mode]=x[i,:]
			dfResults['%dCos'%mode]=x[i+1,:]
			dfResults['%sX'%mode]=1j*dfResults['%sSin'%mode]+dfResults['%dCos'%mode]
			dfResults['%sAmp'%mode]=_np.sqrt(dfResults['%dSin'%mode]**2+dfResults['%dCos'%mode]**2)
			dfResults['%sPhase'%mode]=_np.arctan2(dfResults['%dSin'%mode],dfResults['%dCos'%mode])
			if type(timeFWHM_phaseFilter) != type(None):
				dfResults['%sPhaseFilt'%mode]=_gaussianFilter_df(	_pd.DataFrame(_unwrapPhase(dfResults['%dPhase'%mode]),index=df.index),
																	timeFWHM=timeFWHM_phaseFilter,
																	plot=False,
																	filterType='low')
			else:
				dfResults['%sPhaseFilt'%mode]=_unwrapPhase(dfResults['%dPhase'%mode])
			dfResults['%sFreq'%mode]=_np.gradient(dfResults['%sPhaseFilt'%mode])/_np.gradient(df.index.to_numpy())/(_np.pi*2)
			i+=2
			
	if plot==True:
		
		from johnspythonlibrary2.Process.Pandas import filterDFByColOrIndex
		import johnspythonlibrary2.Plot as _plot
		import matplotlib.pyplot as _plt
		from johnspythonlibrary2.Process.Misc import extractIntsFromStr
		
		fig,ax=_plt.subplots(3,sharex=True)
		
		dfTemp=filterDFByColOrIndex(dfResults,'Amp')
		for key,val in dfTemp.iteritems():
			modeNum=extractIntsFromStr(key)[0]
			ax[0].plot(val.index*1e3,val,label=modeNum)
		_plot.finalizeSubplot(ax[0],
								ylabel='',
								subtitle='amp.',
								title='%s'%title)
		
		dfTemp=filterDFByColOrIndex(dfResults,'Phase')
		dfTemp=filterDFByColOrIndex(dfTemp,'Filt',invert=True)
		for key,val in dfTemp.iteritems():
			modeNum=extractIntsFromStr(key)[0]
			ax[1].plot(val.index*1e3,val,'.',label=modeNum)
		_plot.finalizeSubplot(ax[1],
								ylabel='rad',
								subtitle='phase',
#								title='%s'%title,
								)
		
		dfTemp=filterDFByColOrIndex(dfResults,'Freq')
		for key,val in dfTemp.iteritems():
			modeNum=extractIntsFromStr(key)[0]
			ax[2].plot(val.index*1e3,val*1e-3,label=modeNum)
		_plot.finalizeSubplot(ax[2],
								ylabel='kHz',
								subtitle='Freq.',
								xlabel='Time (ms)'
								)
		
		_plot.finalizeFigure(fig)
			
			
	return dfResults
Ejemplo n.º 4
0
def sxrData(shotno=98170,
            tStart=_TSTART,
            tStop=_TSTOP,
            plot=False,
            dropBadChannels=True,
            forceDownload=False):
    """
	Downloads (and optionally plots) soft xray sensor data.   
	
	Parameters
	----------
	shotno : int
		shot number of desired data
	tStart : float
		time (in seconds) to trim data before
		default is 0 ms
	tStop : float
		time (in seconds) to trim data after
		default is 10 ms
	plot : bool
		default is False
	dropBadChannels : bool
		Drops bad channels
		
	Notes
	-----	
	Channels 5, 8, 10, 13 and 15 are considered "bad".  These particular channels
	are frequently "missing" from the tree, inlclude anamolous data, or their
	signals are attenuated.  
	
	Example
	-------
	::
		
		df=sxrData(106000,plot=True,tStart=1.5e-3,tStop=5.2e-3)

	"""

    # subfunctions
    @_backupDFs
    def dfSXR(shotno, dfSXRMeta):
        dfSXR = mdsData(shotno,
                        dfSXRMeta.addresses.to_list(),
                        columnNames=dfSXRMeta.index.to_list())
        return dfSXR

    # load meta data
    sensor = 'SXR'
    try:
        directory = _path.dirname(_path.realpath(__file__))
        dfMeta = _readOdsToDF('%s/listOfAllSensorsOnHBTEP.ods' % directory,
                              sensor).set_index('names')
    except:
        dfMeta = _readOdsToDF('listOfAllSensorsOnHBTEP.ods',
                              sensor).set_index('names')

    # load raw data
    df = dfSXR(shotno, dfMeta, forceDownload=forceDownload)

    # drop bad channels
    if dropBadChannels == True:
        badSensors = dfMeta[dfMeta.bad == True].index.to_list()
        dfMeta = dfMeta.drop(badSensors, axis=0)
        df = df.drop(columns=badSensors)

    # trim time
    df = _filterDFByTime(df, tStart, tStop)

    # optional high-pass filter
    dfHP = _gaussianFilter_df(df, timeFWHM=0.4e-3)

    # optional plot
    if plot == True:

        if True:  # raw data
            fig, ax, cax = _plot.subplotsWithColormaps(2, sharex=True)
            cax[0].remove()
            for key, val in df.iteritems():

                ax[0].plot(val, label=key)
            _plot.finalizeSubplot(
                ax[0],
                title='%d, raw' % shotno,
            )

            temp = _np.copy(df.columns).astype(str)
            columns = _np.array([
                '%d' % int(temp[i][-2:]) for i in range(len(temp))
            ]).astype(float)
            df2 = df.copy()
            df2.columns = columns
            fig, ax, _ = _plotHbt.stripeyPlot(
                df2,
                fig=fig,
                ax=ax[1],
                cax=cax[1],
                #										title='%d, raw'%shotno,
                colorMap='magma_r',
                zlim=[0, df.max().max()],
                levels=_np.linspace(0,
                                    df.max().max(), 41),
                ylabel='Channel #')
            _plot.finalizeFigure(fig)

        if True:  # filtered data
            fig, ax, cax = _plot.subplotsWithColormaps(2, sharex=True)
            cax[0].remove()
            for key, val in dfHP.iteritems():

                ax[0].plot(val, label=key)
            _plot.finalizeSubplot(
                ax[0],
                title='%d, high-pass filtered' % shotno,
            )

            temp = _np.copy(dfHP.columns).astype(str)
            columns = _np.array([
                '%d' % int(temp[i][-2:]) for i in range(len(temp))
            ]).astype(float)
            dfHP2 = dfHP.copy()
            dfHP2.columns = columns
            fig, ax, _ = _plotHbt.stripeyPlot(
                dfHP2,
                fig=fig,
                ax=ax[1],
                cax=cax[1],
                #								 title='%d, high-pass filtered'%shotno,
                ylabel='Channel #')
            _plot.finalizeFigure(fig)

    return df, dfHP