Ejemplo n.º 1
0
    pred, uncert = sgp.predict(X_train, 0 * X_train)
    error = np.sqrt(np.mean((pred - y_train)**2))
    trainll = np.mean(sps.norm.logpdf(pred - y_train, scale=np.sqrt(uncert)))
    print 'Train RMSE: ', error
    print 'Train ll: ', trainll

    # We pick the next 60 inputs
    next_inputs = sgp.batched_greedy_ei(60, np.min(X_train, 0),
                                        np.max(X_train, 0))
    valid_smiles = []
    new_features = []
    for i in xrange(60):
        all_vec = next_inputs[i].reshape((1, -1))
        tree_vec, mol_vec = np.hsplit(all_vec, 2)
        tree_vec = create_var(torch.from_numpy(tree_vec).float())
        mol_vec = create_var(torch.from_numpy(mol_vec).float())
        s = model.decode(tree_vec, mol_vec, prob_decode=False)
        if s is not None:
            valid_smiles.append(s)
            new_features.append(all_vec)

    print len(valid_smiles), "molecules are found"
    valid_smiles = valid_smiles[:50]
    new_features = next_inputs[:50]
    new_features = np.vstack(new_features)
    save_object(valid_smiles,
                opts.save_dir + "/valid_smiles{}.dat".format(iteration))

    import sascorer
    import networkx as nx
Ejemplo n.º 2
0
def run_bo_demo():
    import sys
    sys.path.append('/home/icml18-jtnn')
    import pickle
    import gzip
    from sparse_gp import SparseGP
    import scipy.stats as sps
    import numpy as np
    import os.path
    import time
    import rdkit
    from rdkit.Chem import MolFromSmiles, MolToSmiles
    from rdkit.Chem import Descriptors
    from rdkit.Chem import PandasTools
    import torch
    import torch.nn as nn
    from jtnn import create_var, JTNNVAE, Vocab

    start_time = time.time()
    lg = rdkit.RDLogger.logger()
    lg.setLevel(rdkit.RDLogger.CRITICAL)

    # We define the functions used to load and save objects
    def save_object(obj, filename):
        result = pickle.dumps(obj)
        with gzip.GzipFile(filename, 'wb') as dest:
            dest.write(result)
        dest.close()

    def load_object(filename):
        with gzip.GzipFile(filename, 'rb') as source:
            result = source.read()
        ret = pickle.loads(result)
        source.close()
        return ret

    vocab_path = '../data/vocab.txt'
    #save_dir=save_dir
    vocab = [x.strip("\r\n ") for x in open(vocab_path)]
    vocab = Vocab(vocab)
    #    print(opts.save_dir)
    hidden_size = 450
    latent_size = 56
    depth = 3
    random_seed = 1
    model = JTNNVAE(vocab, hidden_size, latent_size, depth)
    model.load_state_dict(
        torch.load('../molvae/MPNVAE-h450-L56-d3-beta0.005/model.iter-4',
                   map_location=lambda storage, loc: storage))
    #model = model.cuda()

    # We load the random seed
    np.random.seed(random_seed)

    # We load the data (y is minued!)
    X = np.loadtxt('latent_features_demo.txt')
    y = -np.loadtxt('targets_demo.txt')
    y = y.reshape((-1, 1))

    n = X.shape[0]
    #    print(X.shape[1])
    permutation = np.random.choice(n, n, replace=False)
    #   print(n)
    X_train = X[permutation, :][0:np.int(np.round(0.8 * n)), :]
    X_test = X[permutation, :][np.int(np.round(0.8 * n)):, :]
    #  print(X_train.shape)
    y_train = y[permutation][0:np.int(np.round(0.8 * n))]
    y_test = y[permutation][np.int(np.round(0.8 * n)):]

    np.random.seed(random_seed)

    logP_values = np.loadtxt('logP_values_demo.txt')
    SA_scores = np.loadtxt('SA_scores_demo.txt')
    cycle_scores = np.loadtxt('cycle_scores_demo.txt')
    SA_scores_normalized = (np.array(SA_scores) -
                            np.mean(SA_scores)) / np.std(SA_scores)
    logP_values_normalized = (np.array(logP_values) -
                              np.mean(logP_values)) / np.std(logP_values)
    cycle_scores_normalized = (np.array(cycle_scores) -
                               np.mean(cycle_scores)) / np.std(cycle_scores)

    iteration = 0
    while iteration < 1:
        # We fit the GP
        np.random.seed(iteration * random_seed)
        M = 1
        sgp = SparseGP(X_train, 0 * X_train, y_train, M)
        sgp.train_via_ADAM(X_train,
                           0 * X_train,
                           y_train,
                           X_test,
                           X_test * 0,
                           y_test,
                           minibatch_size=2,
                           max_iterations=100,
                           learning_rate=0.001)

        pred, uncert = sgp.predict(X_test, 0 * X_test)
        error = np.sqrt(np.mean((pred - y_test)**2))
        testll = np.mean(sps.norm.logpdf(pred - y_test, scale=np.sqrt(uncert)))
        #     print 'Test RMSE: ', error
        #    print 'Test ll: ', testll

        pred, uncert = sgp.predict(X_train, 0 * X_train)
        error = np.sqrt(np.mean((pred - y_train)**2))
        trainll = np.mean(
            sps.norm.logpdf(pred - y_train, scale=np.sqrt(uncert)))
        #   print 'Train RMSE: ', error
        #  print 'Train ll: ', trainll

        # We pick the next 60 inputs
        next_inputs = sgp.batched_greedy_ei(60, np.min(X_train, 0),
                                            np.max(X_train, 0))
        valid_smiles = []
        valid_mols = []
        new_features = []
        for i in xrange(60):
            all_vec = next_inputs[i].reshape((1, -1))
            tree_vec, mol_vec = np.hsplit(all_vec, 2)
            tree_vec = create_var(torch.from_numpy(tree_vec).float())
            mol_vec = create_var(torch.from_numpy(mol_vec).float())
            s = model.decode(tree_vec, mol_vec, prob_decode=False)
            if s is not None:
                valid_smiles.append(s)
                # print(MolFromSmiles(s))
                valid_mols.append(str(MolFromSmiles(s)))
                new_features.append(all_vec)

        print len(valid_smiles), "molecules are found"
        valid_smiles = valid_smiles[:50]
        valid_mols = valid_mols[:50]
        new_features = next_inputs[:50]
        new_features = np.vstack(new_features)

        #   save_object(valid_smiles, save_dir + "/valid_smiles{}.dat".format(iteration))
        #  save_object(valid_mols,save_dir + '/valid_mols{}.png'.format(iteration))
        #        save_object(mol1
        import sascorer
        import networkx as nx
        from rdkit.Chem import rdmolops

        scores = []
        for i in range(len(valid_smiles)):
            current_log_P_value = Descriptors.MolLogP(
                MolFromSmiles(valid_smiles[i]))
            current_SA_score = -sascorer.calculateScore(
                MolFromSmiles(valid_smiles[i]))
            cycle_list = nx.cycle_basis(
                nx.Graph(
                    rdmolops.GetAdjacencyMatrix(MolFromSmiles(
                        valid_smiles[i]))))
            if len(cycle_list) == 0:
                cycle_length = 0
            else:
                cycle_length = max([len(j) for j in cycle_list])
            if cycle_length <= 6:
                cycle_length = 0
            else:
                cycle_length = cycle_length - 6

            current_cycle_score = -cycle_length

            current_SA_score_normalized = (
                current_SA_score - np.mean(SA_scores)) / np.std(SA_scores)
            current_log_P_value_normalized = (
                current_log_P_value -
                np.mean(logP_values)) / np.std(logP_values)
            current_cycle_score_normalized = (
                current_cycle_score -
                np.mean(cycle_scores)) / np.std(cycle_scores)

            score = current_SA_score_normalized + current_log_P_value_normalized + current_cycle_score_normalized
            scores.append(-score)  #target is always minused

    # print valid_smiles
    # print scores

    #    save_object(scores, save_dir + "/scores{}.dat".format(iteration))

        if len(new_features) > 0:
            X_train = np.concatenate([X_train, new_features], 0)
            y_train = np.concatenate([y_train, np.array(scores)[:, None]], 0)

        iteration += 1

#    print('Seconds taken: %s' %(time.time() -start_time))
    all_smiles = []
    #all_smiles=valid_smiles+scores+valid_mols
    all_smiles.extend(zip(valid_smiles, scores, valid_mols))
    all_smiles = [(x, -y, z) for x, y, z in all_smiles]
    all_smiles = sorted(all_smiles, key=lambda x: x[1], reverse=True)
    # return valid_smiles[0:5],scores[0:5],valid_mols[0:5]
    return all_smiles[0:3]