Ejemplo n.º 1
0
    def update_plots(self):
        # Determine plot location and names
        html_stub = 'database_monitor_{}_component.html'
        js_stub = 'database_monitor_{}_component.js'
        
        self.refs["fig_jwst"].data = self.jwst_table
        self.refs["fig_caom"].data = self.caom_table

        # Save the plots as components
        for name in ["jwst", "caom"]:
            script, div = self.embed("fig_"+name)
            html_name = html_stub.format(name)
            js_name = js_stub.format(name)
            div_outfile = os.path.join(self.output_dir, 'monitor_mast', 
                                       html_name)
            with open(div_outfile, 'w') as f:
                f.write(div)
                f.close()
            set_permissions(div_outfile)

            script_outfile = os.path.join(self.output_dir, 'monitor_mast', 
                                          js_name)
            with open(script_outfile, 'w') as f:
                f.write(script)
                f.close()
            set_permissions(script_outfile)

            logging.info('Saved Bokeh components files: {} and {}'.format(html_name, 
                                                                          js_name))
Ejemplo n.º 2
0
def configure_logging(module, production_mode=True, path='./'):
    """Configure the log file with a standard logging format.

    Parameters
    ----------
    module : str
        The name of the module being logged.
    production_mode : bool
        Whether or not the output should be written to the production
        environement.
    path : str
        Where to write the log if user-supplied path; default to working dir.
    """

    # Determine log file location
    if production_mode:
        log_file = make_log_file(module)
    else:
        log_file = make_log_file(module, production_mode=False, path=path)
    global LOG_FILE_LOC
    global PRODUCTION_BOOL
    LOG_FILE_LOC = log_file
    PRODUCTION_BOOL = production_mode

    # Create the log file and set the permissions
    logging.basicConfig(filename=log_file,
                        format='%(asctime)s %(levelname)s: %(message)s',
                        datefmt='%m/%d/%Y %H:%M:%S %p',
                        level=logging.INFO)
    set_permissions(log_file)
Ejemplo n.º 3
0
def test_file_group(test_file):
    """Create a file with the standard permissions ``('-rw-r--r--')``
    and default group.

    Modify the group and set the default permissions defined in
    ``permissions.py``.  Assert that both group and permissions were
    set correctly.

    Parameters
    ----------
    test_file : str
        Path of file used for testing
    """
    # Get owner and group on the current system.
    owner = get_owner_string(test_file)
    group = get_group_string(test_file)

    # attempt to retrieve a group name different from default
    group_index = 0
    test_group = grp.getgrgid(os.getgroups()[group_index]).gr_name

    set_permissions(test_file, group=test_group, owner=owner)
    assert has_permissions(test_file, group=test_group, owner=owner)

    # return to default group
    set_permissions(test_file, owner=owner, group=group)
    assert has_permissions(test_file, owner=owner, group=group)
Ejemplo n.º 4
0
    def save_image(self, fname, thumbnail=False):
        """
        Save an image in the requested output format and sets the
        appropriate permissions

        Parameters
        ----------
        image : obj
            A ``matplotlib`` figure object

        fname : str
            Output filename

        thumbnail : bool
            True if saving a thumbnail image, false for the full
            preview image.
        """

        plt.savefig(fname, bbox_inches='tight', pad_inches=0)
        permissions.set_permissions(fname)

        # If the image is a thumbnail, rename to '.thumb'
        if thumbnail:
            thumb_fname = fname.replace('.jpg', '.thumb')
            os.rename(fname, thumb_fname)
            logging.info(f'Saved image to {thumb_fname}')
        else:
            logging.info(f'Saved image to {fname}')
Ejemplo n.º 5
0
def test_file_permissions(test_file):
    """Create a file with the standard permissions ``('-rw-r--r--')``.

    Set the default permissions defined in ``permissions.py``. Assert
    that these were set correctly.

    Parameters
    ----------
    test_file : str
        Path of file used for testing
    """
    # Get owner and group on the current system.
    owner = get_owner_string(test_file)
    group = get_group_string(test_file)

    set_permissions(test_file, owner=owner, group=group)
    assert has_permissions(test_file, owner=owner, group=group)
Ejemplo n.º 6
0
def test_directory_permissions(test_directory):
    """Create a directory with the standard permissions
    ``('-rw-r--r--')``.

    Set the default permissions defined in ``permissions.py``. Assert
    that these were set correctly.

    Parameters
    ----------
    test_directory : str
        Path of directory used for testing
    """
    # Get owner and group on the current system.This allows to implement the tests
    # independently from the user.
    owner = get_owner_string(test_directory)
    group = get_group_string(test_directory)
    print('\nCurrent owner={} group={}'.format(owner, group))

    set_permissions(test_directory, owner=owner, group=group)
    assert has_permissions(test_directory, owner=owner, group=group)
Ejemplo n.º 7
0
def monitor_template_main():
    """ The main function of the ``monitor_template`` module."""

    # Example of logging
    my_variable = 'foo'
    logging.info('Some useful information: {}'.format(my_variable))

    # Example of querying for a dataset via MAST API
    service = "Mast.Jwst.Filtered.Niriss"
    params = {
        "columns": "filename",
        "filters": [{
            "paramName": "filter",
            "values": ['F430M']
        }]
    }
    response = Mast.service_request_async(service, params)
    result = response[0].json()['data']
    filename_of_interest = result[0][
        'filename']  # jw00304002001_02102_00001_nis_uncal.fits

    # Example of parsing a filename
    filename_dict = filename_parser(filename_of_interest)
    # Contents of filename_dict:
    #     {'program_id': '00304',
    #      'observation': '002',
    #      'visit': '001',
    #      'visit_group': '02',
    #      'parallel_seq_id': '1',
    #      'activity': '02',
    #      'exposure_id': '00001',
    #      'detector': 'nis',
    #      'suffix': 'uncal'}

    # Example of locating a dataset in the filesystem
    filesystem = get_config()['filesystem']
    dataset = os.path.join(filesystem,
                           'jw{}'.format(filename_dict['program_id']),
                           filename_of_interest)

    # Example of reading in dataset using jwst.datamodels
    im = datamodels.open(dataset)
    # Now have access to:
    #     im.data  # Data array
    #     im.err  # ERR array
    #     im.meta  # Metadata such as header keywords

    # Example of saving a file and setting permissions
    im.save('some_filename.fits')
    set_permissions('some_filename.fits')

    # Example of creating and exporting a Bokeh plot
    plt = Donut(im.data, plot_width=600, plot_height=600)
    plt.sizing_mode = 'stretch_both'  # Necessary for responsive sizing on web app
    script, div = components(plt)

    plot_output_dir = get_config()['outputs']
    div_outfile = os.path.join(plot_output_dir, 'monitor_name',
                               filename_of_interest + "_component.html")
    script_outfile = os.path.join(plot_output_dir, 'monitor_name',
                                  filename_of_interest + "_component.js")

    for outfile, component in zip([div_outfile, script_outfile],
                                  [div, script]):
        with open(outfile, 'w') as f:
            f.write(component)
            f.close()
        set_permissions(outfile)

    # Perform any other necessary code
    well_named_variable = "Function does something."
    result_of_second_function = second_function(well_named_variable)
Ejemplo n.º 8
0
def generate_preview_images():
    """The main function of the ``generate_preview_image`` module."""

    # Begin logging
    logging.info("Beginning the script run")

    filesystem = get_config()['filesystem']
    preview_image_filesystem = get_config()['preview_image_filesystem']
    thumbnail_filesystem = get_config()['thumbnail_filesystem']

    filenames = glob(os.path.join(filesystem, '*/*.fits'))
    grouped_filenames = group_filenames(filenames)
    logging.info(f"Found {len(filenames)} filenames")

    for file_list in grouped_filenames:
        filename = file_list[0]
        # Determine the save location
        try:
            identifier = 'jw{}'.format(filename_parser(filename)['program_id'])
        except ValueError as error:
            identifier = os.path.basename(filename).split('.fits')[0]

        preview_output_directory = os.path.join(preview_image_filesystem,
                                                identifier)
        thumbnail_output_directory = os.path.join(thumbnail_filesystem,
                                                  identifier)

        # Check to see if the preview images already exist and skip
        # if they do
        file_exists = check_existence(file_list, preview_output_directory)
        if file_exists:
            logging.info(
                "JPG already exists for {}, skipping.".format(filename))
            continue

        # Create the output directories if necessary
        if not os.path.exists(preview_output_directory):
            os.makedirs(preview_output_directory)
            permissions.set_permissions(preview_output_directory)
            logging.info(f'Created directory {preview_output_directory}')
        if not os.path.exists(thumbnail_output_directory):
            os.makedirs(thumbnail_output_directory)
            permissions.set_permissions(thumbnail_output_directory)
            logging.info(f'Created directory {thumbnail_output_directory}')

        # If the exposure contains more than one file (because more
        # than one detector was used), then create a mosaic
        max_size = 8
        numfiles = len(file_list)
        if numfiles != 1:
            try:
                mosaic_image, mosaic_dq = create_mosaic(file_list)
                logging.info('Created mosiac for:')
                for item in file_list:
                    logging.info(f'\t{item}')
            except (ValueError, FileNotFoundError) as error:
                logging.error(error)
            dummy_file = create_dummy_filename(file_list)
            if numfiles in [2, 4]:
                max_size = 16
            elif numfiles in [8]:
                max_size = 32

        # Create the nominal preview image and thumbnail
        try:
            im = PreviewImage(filename, "SCI")
            im.clip_percent = 0.01
            im.scaling = 'log'
            im.cmap = 'viridis'
            im.output_format = 'jpg'
            im.preview_output_directory = preview_output_directory
            im.thumbnail_output_directory = thumbnail_output_directory

            # If a mosaic was made from more than one file
            # insert it and it's associated DQ array into the
            # instance of PreviewImage. Also set the input
            # filename to indicate that we have mosaicked data
            if numfiles != 1:
                im.data = mosaic_image
                im.dq = mosaic_dq
                im.file = dummy_file

            im.make_image(max_img_size=max_size)
        except ValueError as error:
            logging.warning(error)

    # Complete logging:
    logging.info("Completed.")
Ejemplo n.º 9
0
def jwst_inventory(instruments=JWST_INSTRUMENTS,
                   dataproducts=['image', 'spectrum', 'cube'],
                   caom=False,
                   plot=False):
    """Gather a full inventory of all JWST data in each instrument
    service by instrument/dtype

    Parameters
    ----------
    instruments: sequence
        The list of instruments to count
    dataproducts: sequence
        The types of dataproducts to count
    caom: bool
        Query CAOM service
    plot: bool
        Return a pie chart of the data

    Returns
    -------
    astropy.table.table.Table
        The table of record counts for each instrument and mode
    """
    logging.info('Searching database...')
    # Iterate through instruments
    inventory, keywords = [], {}
    for instrument in instruments:
        ins = [instrument]
        for dp in dataproducts:
            count = instrument_inventory(instrument, dataproduct=dp, caom=caom)
            ins.append(count)

        # Get the total
        ins.append(sum(ins[-3:]))

        # Add it to the list
        inventory.append(ins)

        # Add the keywords to the dict
        keywords[instrument] = instrument_keywords(instrument, caom=caom)

    logging.info(
        'Completed database search for {} instruments and {} data products.'.
        format(instruments, dataproducts))

    # Make the table
    all_cols = ['instrument'] + dataproducts + ['total']
    table = pd.DataFrame(inventory, columns=all_cols)

    # Melt the table
    table = pd.melt(table,
                    id_vars=['instrument'],
                    value_vars=dataproducts,
                    value_name='files',
                    var_name='dataproduct')

    # Plot it
    if plot:
        # Determine plot location and names
        output_dir = get_config()['outputs']

        if caom:
            output_filename = 'database_monitor_caom'
        else:
            output_filename = 'database_monitor_jwst'

        # Make the plot
        plt = Donut(table,
                    label=['instrument', 'dataproduct'],
                    values='files',
                    text_font_size='12pt',
                    hover_text='files',
                    name="JWST Inventory",
                    plot_width=600,
                    plot_height=600)

        # Save the plot as full html
        html_filename = output_filename + '.html'
        outfile = os.path.join(output_dir, 'monitor_mast', html_filename)
        output_file(outfile)
        save(plt)
        set_permissions(outfile)

        logging.info(
            'Saved Bokeh plots as HTML file: {}'.format(html_filename))

        # Save the plot as components
        plt.sizing_mode = 'stretch_both'
        script, div = components(plt)

        div_outfile = os.path.join(output_dir, 'monitor_mast',
                                   output_filename + "_component.html")
        with open(div_outfile, 'w') as f:
            f.write(div)
            f.close()
        set_permissions(div_outfile)

        script_outfile = os.path.join(output_dir, 'monitor_mast',
                                      output_filename + "_component.js")
        with open(script_outfile, 'w') as f:
            f.write(script)
            f.close()
        set_permissions(script_outfile)

        logging.info(
            'Saved Bokeh components files: {}_component.html and {}_component.js'
            .format(output_filename, output_filename))

    return table, keywords
Ejemplo n.º 10
0
    def update_plots(self):
        """
        Update the ColumnDataSource objects for the filesystem monitor plots.
        """

        logging.info("Beginning filesystem statistics monitor plot updates")

        # We'll ensure that all the statistics are in the correct formats
        dates = np.array(self.statistics['timestamp'], dtype='datetime64')

        self.refs['source_filecount'].data = {
            'dates': dates,
            'filecount': np.array(self.statistics['file_count'], dtype=float)
        }

        self.refs['source_stats'].data = {
            'dates':
            dates,
            'systemsize':
            np.array(self.statistics['total'], dtype=float) / (1024.**3),
            'freesize':
            np.array(self.statistics['available'], dtype=float) / (1024.**3),
            'usedsize':
            np.array(self.statistics['used'], dtype=float) / (1024.**3)
        }

        self.refs['source_files'].data = {
            'dates': dates,
            'fits': np.array(self.results['fits_files'], dtype=int),
            'uncal': np.array(self.results['uncal'], dtype=int),
            'cal': np.array(self.results['cal'], dtype=int),
            'rate': np.array(self.results['rate'], dtype=int),
            'rateint': np.array(self.results['rateint'], dtype=int),
            'i2d': np.array(self.results['i2d'], dtype=int),
            'nrc': np.array(self.results['nrc'], dtype=int),
            'nrs': np.array(self.results['nrs'], dtype=int),
            'nis': np.array(self.results['nis'], dtype=int),
            'mir': np.array(self.results['mir'], dtype=int),
            'fgs': np.array(self.results['gui'], dtype=int)
        }

        self.refs['source_sizes'].data = {
            'dates': dates,
            'fits':
            np.array(self.sizes['fits_files'], dtype=float) / (1024.**3),
            'uncal': np.array(self.sizes['uncal'], dtype=float) / (1024.**3),
            'cal': np.array(self.sizes['cal'], dtype=float) / (1024.**3),
            'rate': np.array(self.sizes['rate'], dtype=float) / (1024.**3),
            'rateint':
            np.array(self.sizes['rateint'], dtype=float) / (1024.**3),
            'i2d': np.array(self.sizes['i2d'], dtype=float) / (1024.**3),
            'nrc': np.array(self.sizes['nrc'], dtype=float) / (1024.**3),
            'nrs': np.array(self.sizes['nrs'], dtype=float) / (1024.**3),
            'nis': np.array(self.sizes['nis'], dtype=float) / (1024.**3),
            'mir': np.array(self.sizes['mir'], dtype=float) / (1024.**3),
            'fgs': np.array(self.sizes['gui'], dtype=float) / (1024.**3)
        }

        # Write scripts out to files
        for name in [
                'filecount', 'system_stats', 'filecount_type', 'size_type'
        ]:
            script, div = self.embed('fig_' + name)
            div_outfile = os.path.join(self.outputs_dir,
                                       "{}_component.html".format(name))
            with open(div_outfile, 'w') as f:
                f.write(div)
                f.close()
            set_permissions(div_outfile)

            script_outfile = os.path.join(self.outputs_dir,
                                          "{}_component.js".format(name))
            with open(script_outfile, 'w') as f:
                f.write(script)
                f.close()
            set_permissions(script_outfile)

            logging.info(
                'Saved components files: {}_component.html and {}_component.js'
                .format(name, name))

        logging.info('Filesystem statistics plot updates complete.')
Ejemplo n.º 11
0
    def monitor(self):
        """
        Monitoring script to inventory the JWST filesystem, save file 
        statistics, and generate plots.
        """

        # Begin logging
        logging.info('Beginning filesystem monitoring.')

        # re-initialize dictionaries for output
        results_dict = defaultdict(int)
        size_dict = defaultdict(float)

        # Walk through all directories recursively and count files
        logging.info('Searching filesystem...')
        for dirpath, dirs, files in os.walk(self.filesystem):
            results_dict['file_count'] += len(
                files)  # find number of all files
            for filename in files:
                file_path = os.path.join(dirpath, filename)
                if filename.endswith(
                        ".fits"):  # find total number of fits files
                    results_dict['fits_files'] += 1
                    size_dict['size_fits'] += os.path.getsize(file_path)
                    suffix = filename_parser(filename)['suffix']
                    results_dict[suffix] += 1
                    size_dict[suffix] += os.path.getsize(file_path)
                    detector = filename_parser(filename)['detector']
                    instrument = detector[
                        0:
                        3]  # first three characters of detector specify instrument
                    results_dict[instrument] += 1
                    size_dict[instrument] += os.path.getsize(file_path)
        logging.info('{} files found in filesystem'.format(
            results_dict['fits_files']))

        # Get df style stats on file system
        out = subprocess.check_output('df {}'.format(self.filesystem),
                                      shell=True)
        outstring = out.decode(
            "utf-8")  # put into string for parsing from byte format
        parsed = outstring.split(sep=None)

        # Select desired elements from parsed string
        stats = {
            'total':
            int(parsed[8]),  # in blocks of 512 bytes
            'used':
            int(parsed[9]),
            'available':
            int(parsed[10]),
            'percent_used':
            parsed[11],
            'file_count':
            results_dict.pop('file_count'),
            'timestamp':
            datetime.datetime.now().isoformat(
                sep='T', timespec='auto')  # get date of stats
        }

        #store results & sizes in the appropriate dictionaries
        for key, val in results_dict.items():
            self.results[key].append(val)
        for key, val in size_dict.items():
            self.sizes[key].append(val)
        for key, val in stats.items():
            self.statistics[key].append(val)

        # set up output file and write stats
        statsfile = os.path.join(self.outputs_dir, 'statsfile.txt')
        with open(statsfile, "a+") as f:
            f.write(
                "{timestamp} {file_count:15d} {total:15d} {available:15d} {used:15d} {percent_used}\n"
                .format(**stats))
        set_permissions(statsfile)
        logging.info('Saved file statistics to: {}'.format(statsfile))

        output_stub = "{fits_files} {uncal} {cal} {rate} {rateints} {i2d} {nrc} {nrs} {nis} {mir} {gui}\n"
        # set up and read out stats on files by type
        filesbytype = os.path.join(self.outputs_dir, 'filesbytype.txt')
        with open(filesbytype, "a+") as f2:
            f2.write(output_stub.format(**results_dict))
        set_permissions(filesbytype, verbose=False)
        logging.info('Saved file statistics by type to {}'.format(filesbytype))

        # set up file size by type file
        sizebytype = os.path.join(self.outputs_dir, 'sizebytype.txt')
        with open(sizebytype, "a+") as f3:
            f3.write(output_stub.format(**size_dict))
        set_permissions(sizebytype, verbose=False)
        logging.info('Saved file sizes by type to {}'.format(sizebytype))

        logging.info('Filesystem statistics calculation complete.')

        #Update the plots based on new information
        self.update_plots()
Ejemplo n.º 12
0
def monitor_filesystem():
    """Tabulates the inventory of the JWST filesystem, saving
    statistics to files, and generates plots.
    """

    # Begin logging
    logging.info('Beginning filesystem monitoring.')

    # Get path, directories and files in system and count files in all directories
    settings = get_config()
    filesystem = settings['filesystem']
    outputs_dir = os.path.join(settings['outputs'], 'monitor_filesystem')

    # set up dictionaries for output
    results_dict = defaultdict(int)
    size_dict = defaultdict(float)
    # Walk through all directories recursively and count files
    logging.info('Searching filesystem...')
    for dirpath, dirs, files in os.walk(filesystem):
        results_dict['file_count'] += len(files)  # find number of all files
        for filename in files:
            file_path = os.path.join(dirpath, filename)
            if filename.endswith(".fits"):  # find total number of fits files
                results_dict['fits_files'] += 1
                size_dict['size_fits'] += os.path.getsize(file_path)
                suffix = filename_parser(filename)['suffix']
                results_dict[suffix] += 1
                size_dict[suffix] += os.path.getsize(file_path)
                detector = filename_parser(filename)['detector']
                instrument = detector[
                    0:
                    3]  # first three characters of detector specify instrument
                results_dict[instrument] += 1
                size_dict[instrument] += os.path.getsize(file_path)
    logging.info('{} files found in filesystem'.format(
        results_dict['fits_files']))

    # Get df style stats on file system
    out = subprocess.check_output('df {}'.format(filesystem), shell=True)
    outstring = out.decode(
        "utf-8")  # put into string for parsing from byte format
    parsed = outstring.split(sep=None)

    # Select desired elements from parsed string
    total = int(parsed[8])  # in blocks of 512 bytes
    used = int(parsed[9])
    available = int(parsed[10])
    percent_used = parsed[11]

    # Save stats for plotting over time
    now = datetime.datetime.now().isoformat(
        sep='T', timespec='auto')  # get date of stats

    # set up output file and write stats
    statsfile = os.path.join(outputs_dir, 'statsfile.txt')
    with open(statsfile, "a+") as f:
        f.write("{0} {1:15d} {2:15d} {3:15d} {4:15d} {5}\n".format(
            now, results_dict['file_count'], total, available, used,
            percent_used))
    set_permissions(statsfile)
    logging.info('Saved file statistics to: {}'.format(statsfile))

    # set up and read out stats on files by type
    filesbytype = os.path.join(outputs_dir, 'filesbytype.txt')
    with open(filesbytype, "a+") as f2:
        f2.write("{0} {1} {2} {3} {4} {5} {6} {7} {8} {9} {10}\n".format(
            results_dict['fits_files'], results_dict['uncal'],
            results_dict['cal'], results_dict['rate'],
            results_dict['rateints'], results_dict['i2d'], results_dict['nrc'],
            results_dict['nrs'], results_dict['nis'], results_dict['mir'],
            results_dict['gui']))
    set_permissions(filesbytype, verbose=False)
    logging.info('Saved file statistics by type to {}'.format(filesbytype))

    # set up file size by type file
    sizebytype = os.path.join(outputs_dir, 'sizebytype.txt')
    with open(sizebytype, "a+") as f3:
        f3.write("{0} {1} {2} {3} {4} {5} {6} {7} {8} {9} {10}\n".format(
            size_dict['size_fits'], size_dict['uncal'], size_dict['cal'],
            size_dict['rate'], size_dict['rateints'], size_dict['i2d'],
            size_dict['nrc'], size_dict['nrs'], size_dict['nis'],
            size_dict['mir'], size_dict['gui']))
    set_permissions(sizebytype, verbose=False)
    logging.info('Saved file sizes by type to {}'.format(sizebytype))

    logging.info('Filesystem statistics calculation complete.')

    # Create the plots
    plot_system_stats(statsfile, filesbytype, sizebytype)
Ejemplo n.º 13
0
def plot_system_stats(stats_file, filebytype, sizebytype):
    """Read in the file of saved stats over time and plot them.

    Parameters
    -----------
    stats_file : str
        file containing information of stats over time
    filebytype : str
        file containing information of file counts by type over
        time
    sizebytype : str
        file containing information on file sizes by type over time
    """

    # get path for files
    settings = get_config()
    outputs_dir = os.path.join(settings['outputs'], 'monitor_filesystem')

    # read in file of statistics
    date, f_count, sysize, frsize, used, percent = np.loadtxt(stats_file,
                                                              dtype=str,
                                                              unpack=True)
    fits_files, uncalfiles, calfiles, ratefiles, rateintsfiles, i2dfiles, nrcfiles, nrsfiles, nisfiles, mirfiles, fgsfiles = np.loadtxt(
        filebytype, dtype=str, unpack=True)
    fits_sz, uncal_sz, cal_sz, rate_sz, rateints_sz, i2d_sz, nrc_sz, nrs_sz, nis_sz, mir_sz, fgs_sz = np.loadtxt(
        sizebytype, dtype=str, unpack=True)
    logging.info('Read in file statistics from {}, {}, {}'.format(
        stats_file, filebytype, sizebytype))

    # put in proper np array types and convert to GB sizes
    dates = np.array(date, dtype='datetime64')
    file_count = f_count.astype(float)
    systemsize = sysize.astype(float) / (1024.**3)
    freesize = frsize.astype(float) / (1024.**3)
    usedsize = used.astype(float) / (1024.**3)

    fits = fits_files.astype(int)
    uncal = uncalfiles.astype(int)
    cal = calfiles.astype(int)
    rate = ratefiles.astype(int)
    rateints = rateintsfiles.astype(int)
    i2d = i2dfiles.astype(int)
    nircam = nrcfiles.astype(int)
    nirspec = nrsfiles.astype(int)
    niriss = nisfiles.astype(int)
    miri = mirfiles.astype(int)
    fgs = fgsfiles.astype(int)

    fits_size = fits_sz.astype(float) / (1024.**3)
    uncal_size = uncal_sz.astype(float) / (1024.**3)
    cal_size = cal_sz.astype(float) / (1024.**3)
    rate_size = rate_sz.astype(float) / (1024.**3)
    rateints_size = rateints_sz.astype(float) / (1024.**3)
    i2d_size = i2d_sz.astype(float) / (1024.**3)
    nircam_size = nrc_sz.astype(float) / (1024.**3)
    nirspec_size = nrs_sz.astype(float) / (1024.**3)
    niriss_size = nis_sz.astype(float) / (1024.**3)
    miri_size = mir_sz.astype(float) / (1024.**3)
    fgs_size = fgs_sz.astype(float) / (1024.**3)

    # plot the data
    # Plot filecount vs. date
    p1 = figure(tools='pan,box_zoom,reset,wheel_zoom,save',
                x_axis_type='datetime',
                title="Total File Counts",
                x_axis_label='Date',
                y_axis_label='Count')
    p1.line(dates, file_count, line_width=2, line_color='blue')
    p1.circle(dates, file_count, color='blue')

    # Plot system stats vs. date
    p2 = figure(tools='pan,box_zoom,wheel_zoom,reset,save',
                x_axis_type='datetime',
                title='System stats',
                x_axis_label='Date',
                y_axis_label='GB')
    p2.line(dates, systemsize, legend='Total size', line_color='red')
    p2.circle(dates, systemsize, color='red')
    p2.line(dates, freesize, legend='Free bytes', line_color='blue')
    p2.circle(dates, freesize, color='blue')
    p2.line(dates, usedsize, legend='Used bytes', line_color='green')
    p2.circle(dates, usedsize, color='green')

    # Plot fits files by type vs. date
    p3 = figure(tools='pan,box_zoom,wheel_zoom,reset,save',
                x_axis_type='datetime',
                title="Total File Counts by Type",
                x_axis_label='Date',
                y_axis_label='Count')
    p3.line(dates, fits, legend='Total fits files', line_color='black')
    p3.circle(dates, fits, color='black')
    p3.line(dates, uncal, legend='uncalibrated fits files', line_color='red')
    p3.diamond(dates, uncal, color='red')
    p3.line(dates, cal, legend='calibrated fits files', line_color='blue')
    p3.square(date, cal, color='blue')
    p3.line(dates, rate, legend='rate fits files', line_color='green')
    p3.triangle(dates, rate, color='green')
    p3.line(dates, rateints, legend='rateints fits files', line_color='orange')
    p3.asterisk(dates, rateints, color='orange')
    p3.line(dates, i2d, legend='i2d fits files', line_color='purple')
    p3.x(dates, i2d, color='purple')
    p3.line(dates,
            nircam,
            legend='nircam fits files',
            line_color='midnightblue')
    p3.x(dates, nircam, color='midnightblue')
    p3.line(dates,
            nirspec,
            legend='nirspec fits files',
            line_color='springgreen')
    p3.x(dates, nirspec, color='springgreen')
    p3.line(dates, niriss, legend='niriss fits files', line_color='darkcyan')
    p3.x(dates, niriss, color='darkcyan')
    p3.line(dates, miri, legend='miri fits files', line_color='dodgerblue')
    p3.x(dates, miri, color='dodgerblue')
    p3.line(dates, fgs, legend='fgs fits files', line_color='darkred')
    p3.x(dates, fgs, color='darkred')

    # plot size of total fits files by type
    p4 = figure(tools='pan,box_zoom,wheel_zoom,reset,save',
                x_axis_type='datetime',
                title="Total File Sizes by Type",
                x_axis_label='Date',
                y_axis_label='GB')
    p4.line(dates, fits_size, legend='Total fits files', line_color='black')
    p4.circle(dates, fits_size, color='black')
    p4.line(dates,
            uncal_size,
            legend='uncalibrated fits files',
            line_color='red')
    p4.diamond(dates, uncal_size, color='red')
    p4.line(dates, cal_size, legend='calibrated fits files', line_color='blue')
    p4.square(date, cal_size, color='blue')
    p4.line(dates, rate_size, legend='rate fits files', line_color='green')
    p4.triangle(dates, rate_size, color='green')
    p4.line(dates,
            rateints_size,
            legend='rateints fits files',
            line_color='orange')
    p4.asterisk(dates, rateints_size, color='orange')
    p4.line(dates, i2d_size, legend='i2d fits files', line_color='purple')
    p4.x(dates, i2d_size, color='purple')
    p4.line(dates,
            nircam_size,
            legend='nircam fits files',
            line_color='midnightblue')
    p4.x(dates, nircam_size, color='midnightblue')
    p4.line(dates,
            nirspec_size,
            legend='nirspec fits files',
            line_color='springgreen')
    p4.x(dates, nirspec_size, color='springgreen')
    p4.line(dates,
            niriss_size,
            legend='niriss fits files',
            line_color='darkcyan')
    p4.x(dates, niriss_size, color='darkcyan')
    p4.line(dates,
            miri_size,
            legend='miri fits files',
            line_color='dodgerblue')
    p4.x(dates, miri_size, color='dodgerblue')
    p4.line(dates, fgs_size, legend='fgs fits files', line_color='darkred')
    p4.x(dates, fgs_size, color='darkred')

    # create a layout with a grid pattern to save all plots
    grid = gridplot([[p1, p2], [p3, p4]])
    outfile = os.path.join(outputs_dir, "filesystem_monitor.html")
    output_file(outfile)
    save(grid)
    set_permissions(outfile)
    logging.info('Saved plot of all statistics to {}'.format(outfile))

    # Save each plot's components
    plots = [p1, p2, p3, p4]
    plot_names = ['filecount', 'system_stats', 'filecount_type', 'size_type']
    for plot, name in zip(plots, plot_names):
        plot.sizing_mode = 'stretch_both'
        script, div = components(plot)

        div_outfile = os.path.join(outputs_dir,
                                   "{}_component.html".format(name))
        with open(div_outfile, 'w') as f:
            f.write(div)
            f.close()
        set_permissions(div_outfile)

        script_outfile = os.path.join(outputs_dir,
                                      "{}_component.js".format(name))
        with open(script_outfile, 'w') as f:
            f.write(script)
            f.close()
        set_permissions(script_outfile)

        logging.info(
            'Saved components files: {}_component.html and {}_component.js'.
            format(name, name))

    logging.info('Filesystem statistics plotting complete.')

    # Begin logging:
    logging.info("Completed.")