Ejemplo n.º 1
0
def test_make_image(test_directory):
    """Use PreviewImage.make_image to create preview images of a sample JWST exposure.

    Assert that the number of JPGs created corresponds to the number of integrations.

    Parameters
    ----------
    test_directory : str
        Path of directory used for testing

    """
    filenames = glob.glob(os.path.join(TEST_DATA_DIRECTORY, '*.fits'))
    print('\nGenerating preview images for {}.'.format(filenames))

    output_directory = test_directory

    for filename in filenames:

        header = fits.getheader(filename)

        # Create and save the preview image or thumbnail
        for create_thumbnail in [False, True]:
            try:
                image = PreviewImage(filename, "SCI")
                image.clip_percent = 0.01
                image.scaling = 'log'
                image.cmap = 'viridis'
                image.output_format = 'jpg'
                image.thumbnail = create_thumbnail
                image.output_directory = output_directory
                image.make_image()
            except ValueError as error:
                print(error)

            if create_thumbnail:
                extension = 'thumb'
            else:
                extension = 'jpg'

            # list of preview images
            preview_image_filenames = glob.glob(
                os.path.join(test_directory, '*.{}'.format(extension)))

            assert len(preview_image_filenames) == header['NINTS']

            # clean up: delete preview images
            for file in preview_image_filenames:
                os.remove(file)
Ejemplo n.º 2
0
def get_image_info(file_root, rewrite):
    """Build and return a dictionary containing information for a given
    ``file_root``.

    Parameters
    ----------
    file_root : str
        The rootname of the file of interest.
    rewrite : bool
        ``True`` if the corresponding JPEG needs to be rewritten,
        ``False`` if not.

    Returns
    -------
    image_info : dict
        A dictionary containing various information for the given
        ``file_root``.
    """

    # Initialize dictionary to store information
    image_info = {}
    image_info['all_jpegs'] = []
    image_info['suffixes'] = []
    image_info['num_ints'] = {}

    preview_dir = os.path.join(get_config()['jwql_dir'], 'preview_images')

    # Find all of the matching files
    dirname = file_root[:7]
    search_filepath = os.path.join(FILESYSTEM_DIR, dirname,
                                   file_root + '*.fits')
    image_info['all_files'] = glob.glob(search_filepath)

    for file in image_info['all_files']:

        # Get suffix information
        suffix = os.path.basename(file).split('_')[4].split('.')[0]
        image_info['suffixes'].append(suffix)

        # Determine JPEG file location
        jpg_dir = os.path.join(preview_dir, dirname)
        jpg_filename = os.path.basename(
            os.path.splitext(file)[0] + '_integ0.jpg')
        jpg_filepath = os.path.join(jpg_dir, jpg_filename)

        # Check that a jpg does not already exist. If it does (and rewrite=False),
        # just call the existing jpg file
        if os.path.exists(jpg_filepath) and not rewrite:
            pass

        # If it doesn't, make it using the preview_image module
        else:
            if not os.path.exists(jpg_dir):
                os.makedirs(jpg_dir)
            im = PreviewImage(file, 'SCI')
            im.output_directory = jpg_dir
            im.make_image()

        # Record how many integrations there are per filetype
        search_jpgs = os.path.join(preview_dir, dirname,
                                   file_root + '_{}_integ*.jpg'.format(suffix))
        num_jpgs = len(glob.glob(search_jpgs))
        image_info['num_ints'][suffix] = num_jpgs

        image_info['all_jpegs'].append(jpg_filepath)

    return image_info
Ejemplo n.º 3
0
def process_program(program):
    """Generate preview images and thumbnails for the given program.

    Parameters
    ----------
    program : str
        The program identifier (e.g. ``88600``)
    """

    # Group together common exposures
    filenames = glob.glob(
        os.path.join(get_config()['filesystem'], program, '*.fits'))
    grouped_filenames = group_filenames(filenames)
    logging.info('Found {} filenames'.format(len(filenames)))

    for file_list in grouped_filenames:
        filename = file_list[0]

        # Determine the save location
        try:
            identifier = 'jw{}'.format(filename_parser(filename)['program_id'])
        except ValueError:
            identifier = os.path.basename(filename).split('.fits')[0]
        preview_output_directory = os.path.join(
            get_config()['preview_image_filesystem'], identifier)
        thumbnail_output_directory = os.path.join(
            get_config()['thumbnail_filesystem'], identifier)

        # Check to see if the preview images already exist and skip if they do
        file_exists = check_existence(file_list, preview_output_directory)
        if file_exists:
            logging.info(
                "JPG already exists for {}, skipping.".format(filename))
            continue

        # Create the output directories if necessary
        if not os.path.exists(preview_output_directory):
            os.makedirs(preview_output_directory)
            permissions.set_permissions(preview_output_directory)
            logging.info(
                'Created directory {}'.format(preview_output_directory))
        if not os.path.exists(thumbnail_output_directory):
            os.makedirs(thumbnail_output_directory)
            permissions.set_permissions(thumbnail_output_directory)
            logging.info(
                'Created directory {}'.format(thumbnail_output_directory))

        # If the exposure contains more than one file (because more
        # than one detector was used), then create a mosaic
        max_size = 8
        numfiles = len(file_list)
        if numfiles > 1:
            try:
                mosaic_image, mosaic_dq = create_mosaic(file_list)
                logging.info('Created mosiac for:')
                for item in file_list:
                    logging.info('\t{}'.format(item))
            except (ValueError, FileNotFoundError) as error:
                logging.error(error)
            dummy_file = create_dummy_filename(file_list)
            if numfiles in [2, 4]:
                max_size = 16
            elif numfiles in [8]:
                max_size = 32

        # Create the nominal preview image and thumbnail
        try:
            im = PreviewImage(filename, "SCI")
            im.clip_percent = 0.01
            im.scaling = 'log'
            im.cmap = 'viridis'
            im.output_format = 'jpg'
            im.preview_output_directory = preview_output_directory
            im.thumbnail_output_directory = thumbnail_output_directory

            # If a mosaic was made from more than one file
            # insert it and it's associated DQ array into the
            # instance of PreviewImage. Also set the input
            # filename to indicate that we have mosaicked data
            if numfiles != 1:
                im.data = mosaic_image
                im.dq = mosaic_dq
                im.file = dummy_file

            im.make_image(max_img_size=max_size)
            logging.info(
                'Created preview image and thumbnail for: {}'.format(filename))
        except ValueError as error:
            logging.warning(error)
Ejemplo n.º 4
0
def create_mosaic(filenames):
    """If an exposure comprises data from multiple detectors read in all
    the appropriate files and create a mosaic so that the preview image
    will show all the data together.

    Parameters
    ----------
    filenames : list
        List of filenames to be combined into a mosaic

    Returns
    -------
    mosaic_filename : str
        Name of fits file containing the mosaicked data
    """

    # Use preview_image to load data and create difference image
    # for each detector. Save in a list
    data = []
    detector = []
    data_lower_left = []
    for filename in filenames:
        image = PreviewImage(filename, "SCI")  # Now have image.data, image.dq
        data_dim = len(image.data.shape)
        if data_dim == 4:
            diff_im = image.difference_image(image.data)
        else:
            diff_im = image.data
        data.append(diff_im)
        detector.append(filename_parser(filename)['detector'].upper())
        data_lower_left.append((image.xstart, image.ystart))

    # Make sure SW and LW data are not being mixed. Create the
    # appropriately sized numpy array to hold all the data based
    # on the channel, module, and subarray size
    mosaic_channel = find_data_channel(detector)
    full_xdim, full_ydim, full_lower_left = array_coordinates(
        mosaic_channel, detector, data_lower_left)

    # Create the array to hold all the data
    datashape = data[0].shape
    datadim = len(datashape)
    if datadim == 2:
        full_array = np.zeros((1, full_ydim, full_xdim)) * np.nan
    elif datadim == 3:
        full_array = np.zeros((datashape[0], full_ydim, full_xdim)) * np.nan
    else:
        raise ValueError(
            ('Difference image for {} must be either 2D or 3D.'.format(
                filenames[0])))

    # Place the data from the individual detectors in the appropriate
    # places in the final image
    for pixdata, detect in zip(data, detector):
        x0, y0 = full_lower_left[detect]
        if datadim == 2:
            yd, xd = pixdata.shape
            full_array[0, y0:y0 + yd, x0:x0 + xd] = pixdata
        elif datadim == 3:
            ints, yd, xd = pixdata.shape
            full_array[:, y0:y0 + yd, x0:x0 + xd] = pixdata

    # Create associated DQ array and set unpopulated pixels to be skipped
    # in preview image scaling
    full_dq = create_dq_array(full_xdim, full_ydim, full_array[0, :, :],
                              mosaic_channel)

    return full_array, full_dq
Ejemplo n.º 5
0
def generate_preview_images():
    """The main function of the ``generate_preview_image`` module."""

    # Begin logging
    logging.info("Beginning the script run")

    filesystem = get_config()['filesystem']
    preview_image_filesystem = get_config()['preview_image_filesystem']
    thumbnail_filesystem = get_config()['thumbnail_filesystem']

    filenames = glob(os.path.join(filesystem, '*/*.fits'))
    grouped_filenames = group_filenames(filenames)
    logging.info(f"Found {len(filenames)} filenames")

    for file_list in grouped_filenames:
        filename = file_list[0]
        # Determine the save location
        try:
            identifier = 'jw{}'.format(filename_parser(filename)['program_id'])
        except ValueError as error:
            identifier = os.path.basename(filename).split('.fits')[0]

        preview_output_directory = os.path.join(preview_image_filesystem,
                                                identifier)
        thumbnail_output_directory = os.path.join(thumbnail_filesystem,
                                                  identifier)

        # Check to see if the preview images already exist and skip
        # if they do
        file_exists = check_existence(file_list, preview_output_directory)
        if file_exists:
            logging.info(
                "JPG already exists for {}, skipping.".format(filename))
            continue

        # Create the output directories if necessary
        if not os.path.exists(preview_output_directory):
            os.makedirs(preview_output_directory)
            permissions.set_permissions(preview_output_directory)
            logging.info(f'Created directory {preview_output_directory}')
        if not os.path.exists(thumbnail_output_directory):
            os.makedirs(thumbnail_output_directory)
            permissions.set_permissions(thumbnail_output_directory)
            logging.info(f'Created directory {thumbnail_output_directory}')

        # If the exposure contains more than one file (because more
        # than one detector was used), then create a mosaic
        max_size = 8
        numfiles = len(file_list)
        if numfiles != 1:
            try:
                mosaic_image, mosaic_dq = create_mosaic(file_list)
                logging.info('Created mosiac for:')
                for item in file_list:
                    logging.info(f'\t{item}')
            except (ValueError, FileNotFoundError) as error:
                logging.error(error)
            dummy_file = create_dummy_filename(file_list)
            if numfiles in [2, 4]:
                max_size = 16
            elif numfiles in [8]:
                max_size = 32

        # Create the nominal preview image and thumbnail
        try:
            im = PreviewImage(filename, "SCI")
            im.clip_percent = 0.01
            im.scaling = 'log'
            im.cmap = 'viridis'
            im.output_format = 'jpg'
            im.preview_output_directory = preview_output_directory
            im.thumbnail_output_directory = thumbnail_output_directory

            # If a mosaic was made from more than one file
            # insert it and it's associated DQ array into the
            # instance of PreviewImage. Also set the input
            # filename to indicate that we have mosaicked data
            if numfiles != 1:
                im.data = mosaic_image
                im.dq = mosaic_dq
                im.file = dummy_file

            im.make_image(max_img_size=max_size)
        except ValueError as error:
            logging.warning(error)

    # Complete logging:
    logging.info("Completed.")