Ejemplo n.º 1
0
    def __find_bounds(self, dir_vec, ptope, bund):

        'Find the generator of the parallelotope.'
        genFun = ptope.getGeneratorRep()

        'Create subsitutions tuples.'
        var_sub = []
        for var_ind, var in enumerate(self.vars):
            var_sub.append((var, genFun[var_ind]))

        #print(f"Variable Sub for {dir_vec}: {var_sub}")

        Timer.start('Functional Composition')
        fog = [func.subs(var_sub, simultaneous=True) for func in self.f]
        Timer.stop('Functional Composition')

        'Perform functional composition with exact transformation from unitbox to parallelotope.'
        bound_polyu = 0
        for coeff_idx, coeff in enumerate(dir_vec):
            bound_polyu += coeff * fog[coeff_idx]

        'Calculate min/max Bernstein coefficients.'
        Timer.start('Bound Computation')
        ub, lb = OptProd(bound_polyu, bund).getBounds()
        Timer.stop('Bound Computation')

        return ub, -1 * lb
Ejemplo n.º 2
0
    def getGeneratorRep(self):

        Timer.start('Generator Procedure')
        base_vertex = self._computeBaseVertex()
        gen_list = self._computeGenerators(base_vertex)

        'Create list representing the linear transformation q + \sum_{j} a_j* g_j'
        expr_list = base_vertex
        for var_ind, var in enumerate(self.vars):
            for i in range(self.dim):
                expr_list[i] += gen_list[var_ind][i] * var
        Timer.stop('Generator Procedure')

        return expr_list
Ejemplo n.º 3
0
    def plot2DPhase(self, x, y, separate=False, lims=None):
        assert len(
            self.flowpipes
        ) != 0, "Plot Object must have at least one flowpipe to plot for 2DPhase."

        Timer.start('Phase')

        dim = self.model.dim

        figure = plt.figure(figsize=PlotSettings.fig_size)
        phase_ax = figure.add_subplot(1, 2, 1)
        vol_ax = figure.add_subplot(1, 2, 2)

        for flow_idx, (flow_label, flowpipe) in enumerate(self.flowpipes):
            self.__halfspace_inter_plot(flowpipe, flow_idx, flow_label, x, y,
                                        phase_ax, separate)
            #self.__support_plot(flowpipe, flow_idx, flow_label, x, y, ax)

        self.__plot_trajs(x, y, phase_ax)
        self.__phase_plot_legend(x, y, phase_ax, lims)

        'Add volume data'
        self.__plot_volume(vol_ax)

        figure_name = "Kaa{}Phase{}.png".format(flowpipe.model.name,
                                                self.__create_var_str([x, y]))
        self.__plot_figure(figure, figure_name)

        phase_time = Timer.stop('Phase')
        print("Plotting phase for dimensions {}, {} done -- Time Spent: {}".
              format(x_var, y_var, phase_time))
Ejemplo n.º 4
0
    def plot2DPhase(self, x, y):

        Timer.start('Phase')

        x_var, y_var = self.vars[x], self.vars[y]

        'Define the following projected normal vectors.'
        norm_vecs = np.zeros([6, self.dim_sys])
        norm_vecs[0][x] = 1
        norm_vecs[1][y] = 1
        norm_vecs[2][x] = -1
        norm_vecs[3][y] = -1
        norm_vecs[4][x] = 1
        norm_vecs[4][y] = 1
        norm_vecs[5][x] = -1
        norm_vecs[5][y] = -1

        fig, ax = plt.subplots(1)
        comple_dim = [i for i in range(self.dim_sys) if i not in [x, y]]

        'Initialize objective function for Chebyshev intersection LP routine.'
        c = [0 for _ in range(self.dim_sys + 1)]
        c[-1] = 1

        for bund in self.flowpipe:
            bund_A, bund_b = bund.getIntersect()

            'Compute the normal vector offsets'
            bund_off = np.empty([len(norm_vecs), 1])
            for i in range(len(norm_vecs)):
                bund_off[i] = minLinProg(np.negative(norm_vecs[i]), bund_A,
                                         bund_b).fun

            'Remove irrelevant dimensions. Mostly doing this to make HalfspaceIntersection happy.'
            phase_intersect = np.hstack((norm_vecs, bund_off))
            phase_intersect = np.delete(phase_intersect, comple_dim, axis=1)

            'Compute Chebyshev center of intersection.'
            row_norm = np.reshape(np.linalg.norm(norm_vecs, axis=1),
                                  (norm_vecs.shape[0], 1))
            center_A = np.hstack((norm_vecs, row_norm))

            neg_bund_off = np.negative(bund_off)
            center_pt = maxLinProg(c, center_A, list(neg_bund_off.flat)).x
            center_pt = np.asarray(
                [b for b_i, b in enumerate(center_pt) if b_i in [x, y]])

            'Run scipy.spatial.HalfspaceIntersection.'
            hs = HalfspaceIntersection(phase_intersect, center_pt)
            inter_x, inter_y = zip(*hs.intersections)
            ax.set_xlabel('{}'.format(x_var))
            ax.set_ylabel('{}'.format(y_var))
            ax.fill(inter_x, inter_y, 'b')

        fig.show()

        phase_time = Timer.stop('Phase')
        print("Plotting phase for dimensions {}, {} done -- Time Spent: {}".
              format(x_var, y_var, phase_time))
Ejemplo n.º 5
0
    def get2DProj(self, var_ind):
        pipe_len = len(self.flowpipe)

        Timer.start('Proj')
        curr_var = self.vars[var_ind]

        'Vector of minimum and maximum points of the polytope represented by parallelotope bundle.'
        y_min, y_max = np.empty(pipe_len), np.empty(pipe_len)

        'Initialize objective function'
        y_obj = [0 for _ in self.vars]
        y_obj[var_ind] = 1

        'Calculate the minimum and maximum points through LPs for every iteration of the bundle.'
        for bund_ind, bund in enumerate(self.flowpipe):

            bund_sys = bund.getIntersect()

            y_min[bund_ind] = bund_sys.max_opt(y_obj).fun
            y_max[bund_ind] = bund_sys.min_opt(y_obj).fun

        Timer.stop("Proj")

        return y_min, y_max
Ejemplo n.º 6
0
    def computeReachSet(self, time_steps):

        initial_set = self.model.bund
        transformer = BundleTransformer(self.model.f)
        flowpipe = [initial_set]

        for ind in range(time_steps):

            Timer.start('Reachable Set Computation')
            trans_bund = transformer.transform(flowpipe[ind])
            reach_time = Timer.stop('Reachable Set Computation')

            print("Computed Step {0} -- Time Elapsed: {1} sec".format(
                ind, reach_time))
            flowpipe.append(trans_bund)

        return FlowPipe(flowpipe, self.model.vars)
Ejemplo n.º 7
0
    def plot2DProj(self, *vars_tup):
        num_var = len(vars_tup)
        pipe_len = len(self.flowpipe)

        fig, ax = plt.subplots(1, num_var)
        ax = [ax] if num_var == 1 else ax

        'Time step vector for plotting'
        t = np.arange(0, pipe_len, 1)

        for ax_ind, var_ind in enumerate(vars_tup):

            Timer.start('Proj')
            curr_var = self.vars[var_ind]

            'Vector of minimum and maximum points of the polytope represented by parallelotope bundle.'
            y_min, y_max = np.empty(pipe_len), np.empty(pipe_len)

            'Initialize objective function'
            y_obj = [0 for _ in self.vars]
            y_obj[var_ind] = 1

            'Calculate the minimum and maximum points through LPs for every iteration of the bundle.'
            for bund_ind, bund in enumerate(self.flowpipe):

                bund_A, bund_b = bund.getIntersect()

                y_min[bund_ind] = minLinProg(y_obj, bund_A, bund_b).fun
                y_max[bund_ind] = maxLinProg(y_obj, bund_A, bund_b).fun

            ax[ax_ind].fill_between(t, y_min, y_max)
            ax[ax_ind].set_xlabel("t: time steps")
            ax[ax_ind].set_ylabel("Reachable Set for {}".format(curr_var))

            plot_time = Timer.stop('Proj')
            print(
                "Plotting projection for dimension {} done -- Time Spent: {}".
                format(curr_var, plot_time))

        fig.show()
Ejemplo n.º 8
0
    def computeReachSet(self,
                        time_steps,
                        tempstrat=None,
                        transmode=BundleMode.AFO):

        initial_set = self.model.bund
        transformer = BundleTransformer(self.model, transmode)

        strat = tempstrat if tempstrat is not None else DefaultStrat(
            self.model)
        flowpipe = [initial_set]

        for ind in range(time_steps):

            Timer.start('Reachable Set Computation')

            starting_bund = copy.deepcopy(flowpipe[ind])

            #print("Open: L: {} \n T: {}".format(starting_bund.L, starting_bund.T))
            #print("Open: Offu: {} \n Offl{}".format(starting_bund.offu, starting_bund.offl))

            strat.open_strat(starting_bund)
            trans_bund = transformer.transform(starting_bund)
            strat.close_strat(trans_bund)

            #print("Close: L: {} \n T: {}".format(trans_bund.L, trans_bund.T))
            #print("Close: Offu: {} Offl{}".format(trans_bund.offu, trans_bund.offl))

            reach_time = Timer.stop('Reachable Set Computation')

            'TODO: Revamp Kaa.log to be output sink handling all output formatting.'
            if not KaaSettings.SuppressOutput:
                print("Computed Step {} -- Time Elapsed: {} sec".format(
                    bolden(ind), bolden(reach_time)))

            flowpipe.append(trans_bund)

        return FlowPipe(flowpipe, self.model, strat)