Ejemplo n.º 1
0
def evaluate():
    """Eval KANJI for a single example"""
    with tf.Graph().as_default() as g:
        # Get images and labels for KANJI.
        eval_data = FLAGS.eval_data == 'test'

        images, labels = kanji.single_input(eval_data=eval_data)

        # Build a Graph that computes the logits predictions from the
        # inference model.
        logits = kanji.inference(images)

        # Calculate predictions.
        top_k_op = tf.nn.top_k(logits, k=5)

        # Restore the moving average version of the learned variables for eval.
        variable_averages = tf.train.ExponentialMovingAverage(
            kanji.MOVING_AVERAGE_DECAY)
        variables_to_restore = variable_averages.variables_to_restore()
        saver = tf.train.Saver(variables_to_restore)

        while True:
            eval_once(saver, top_k_op)
            if FLAGS.run_once:
                break
            time.sleep(FLAGS.eval_interval_secs)
Ejemplo n.º 2
0
def tower_loss(scope):
    """Calculate the total loss on a single tower running the CIFAR model.

  Args:
    scope: unique prefix string identifying the CIFAR tower, e.g. 'tower_0'

  Returns:
     Tensor of shape [] containing the total loss for a batch of data
  """
    # Get images and labels for KANJI.
    images, labels = kanji.distorted_inputs()

    # Build inference Graph.
    logits = kanji.inference(images)

    # Build the portion of the Graph calculating the losses. Note that we will
    # assemble the total_loss using a custom function below.
    _ = kanji.loss(logits, labels)

    # Assemble all of the losses for the current tower only.
    losses = tf.get_collection('losses', scope)

    # Calculate the total loss for the current tower.
    total_loss = tf.add_n(losses, name='total_loss')

    # Attach a scalar summary to all individual losses and the total loss; do the
    # same for the averaged version of the losses.
    for l in losses + [total_loss]:
        # Remove 'tower_[0-9]/' from the name in case this is a multi-GPU training
        # session. This helps the clarity of presentation on tensorboard.
        loss_name = re.sub('%s_[0-9]*/' % kanji.TOWER_NAME, '', l.op.name)
        tf.summary.scalar(loss_name, l)

    return total_loss
Ejemplo n.º 3
0
def evaluate():
  """Eval KANJI for a number of steps."""
  with tf.Graph().as_default() as g:
    # Get images and labels for KANJI.
    eval_data = FLAGS.eval_data == 'test'
    images, labels = kanji.inputs(eval_data=eval_data)

    # Build a Graph that computes the logits predictions from the
    # inference model.
    logits = kanji.inference(images)

    # Calculate predictions.
    top_k_op = tf.nn.in_top_k(logits, labels, 1)

    # Restore the moving average version of the learned variables for eval.
    variable_averages = tf.train.ExponentialMovingAverage(
        kanji.MOVING_AVERAGE_DECAY)
    variables_to_restore = variable_averages.variables_to_restore()
    saver = tf.train.Saver(variables_to_restore)

    # Build the summary operation based on the TF collection of Summaries.
    summary_op = tf.summary.merge_all()

    summary_writer = tf.summary.FileWriter(FLAGS.eval_dir, g)

    while True:
      eval_once(saver, summary_writer, top_k_op, summary_op)
      if FLAGS.run_once:
        break
      time.sleep(FLAGS.eval_interval_secs)
Ejemplo n.º 4
0
def generateGraph():
    """Generate the graph and its graphDef, freeze it, optimize it and then save it"""
    with tf.Graph().as_default() as g:
        # Get images and labels for KANJI.
        eval_data = FLAGS.eval_data == 'test'

        images, labels = kanji.single_input(eval_data=eval_data)
        images2 = tf.reshape(images, [64, 64, 1])
        images2 = tf.identity(images2, name='InputI')
        images2 = tf.image.per_image_standardization(images2)
        images2 = tf.reshape(images2, [1, 64, 64, 1])

        # Build a Graph that computes the logits predictions from the
        # inference model.
        logits = kanji.inference(images2)
        final_tensor = tf.add(logits, 0, name="finalresult")

        generateFile()
Ejemplo n.º 5
0
def train():
    """Train KANJI for a number of steps."""
    with tf.Graph().as_default():
        global_step = tf.Variable(0, trainable=False)

        # Get images and labels for kanjis.
        images, labels = kanji.distorted_inputs()

        # Build a Graph that computes the logits predictions from the
        # inference model.
        logits = kanji.inference(images)

        # Calculate loss.
        loss = kanji.loss(logits, labels)

        # Build a Graph that trains the model with one batch of examples and
        # updates the model parameters.
        train_op = kanji.train(loss, global_step)

        # Create a saver.
        saver = tf.train.Saver(tf.global_variables())

        # Build the summary operation based on the TF collection of Summaries.
        summary_op = tf.summary.merge_all()

        # Build an initialization operation to run below.
        init = tf.global_variables_initializer()

        # Start running operations on the Graph.
        sess = tf.Session(config=tf.ConfigProto(
            log_device_placement=FLAGS.log_device_placement))
        sess.run(init)

        # Start the queue runners.
        tf.train.start_queue_runners(sess=sess)

        summary_writer = tf.summary.FileWriter(FLAGS.train_dir, sess.graph)

        for step in xrange(FLAGS.max_steps):
            start_time = time.time()
            _, loss_value = sess.run([train_op, loss])
            duration = time.time() - start_time

            assert not np.isnan(loss_value), 'Model diverged with loss = NaN'

            if step % 10 == 0:
                num_examples_per_step = FLAGS.batch_size
                examples_per_sec = num_examples_per_step / duration
                sec_per_batch = float(duration)

                format_str = (
                    '%s: step %d, loss = %.2f (%.1f examples/sec; %.3f '
                    'sec/batch)')
                print(format_str % (datetime.now(), step, loss_value,
                                    examples_per_sec, sec_per_batch))

            if step % 100 == 0:
                summary_str = sess.run(summary_op)
                summary_writer.add_summary(summary_str, step)

            # Save the model checkpoint periodically.
            if step % 1000 == 0 or (step + 1) == FLAGS.max_steps:
                checkpoint_path = os.path.join(FLAGS.train_dir, 'model.ckpt')
                saver.save(sess, checkpoint_path, global_step=step)