Ejemplo n.º 1
0
 def test_rig_recover_inplace(self):
     trajectories = deepcopy(self._trajectories_cams)
     rigs = deepcopy(self._rigs)
     kapture.rigs_recover_inplace(trajectories, rigs)
     self.assertTrue(
         equal_trajectories(trajectories, self._trajectories_rigs))
     self.assertTrue(equal_rigs(rigs, self._rigs))
Ejemplo n.º 2
0
 def test_rig_recover_inplace_consistency(self):
     # compare inplace and not inplace
     trajectories_inplace = deepcopy(self._trajectories_cams)
     rigs_inplace = deepcopy(self._rigs)
     kapture.rigs_recover_inplace(trajectories_inplace, rigs_inplace)
     trajectories_not_inplace = kapture.rigs_recover(self._trajectories_cams, self._rigs)
     self.assertTrue(equal_trajectories(trajectories_inplace, trajectories_not_inplace))
Ejemplo n.º 3
0
def _make_rigs(replace_pose_rig, trajectories) -> kapture.Rigs:
    logger.info('Making up a rig ...')
    rigs = kapture.Rigs()
    pose_babord = kapture.PoseTransform(t=[0, 0, 0],
                                        r=quaternion.from_rotation_vector(
                                            [0, -np.pi / 2, 0]))
    pose_tribord = kapture.PoseTransform(t=[0, 0, 0],
                                         r=quaternion.from_rotation_vector(
                                             [0, np.pi / 2, 0]))
    rigs['silda_rig', '0'] = pose_babord
    rigs['silda_rig', '1'] = pose_tribord
    if replace_pose_rig:
        logger.info('replacing camera poses with rig poses.')
        kapture.rigs_recover_inplace(trajectories, rigs)
    return rigs
def import_robotcar_seasons(
        robotcar_path: str,
        kapture_path: str,
        force_overwrite_existing: bool = False,
        images_import_method: TransferAction = TransferAction.skip,
        skip_reconstruction: bool = False,
        rig_collapse: bool = False,
        use_colmap_intrinsics: bool = False,
        import_v1: bool = False) -> None:
    """
    Read the RobotCar Seasons data, creates several kaptures with training and query data.
    :param robotcar_path: path to the robotcar top directory
    :param kapture_path: path to the kapture top directory
    :param force_overwrite_existing: Silently overwrite kapture files if already exists.
    :param images_import_method: choose how to import actual image files.
    :param skip_reconstruction: if True, will skip the reconstruction part from the training data
    :param rig_collapse: if True, will collapse the rig
    """

    kapture_path = path.join(kapture_path, "base")
    os.makedirs(kapture_path, exist_ok=True)

    cameras = import_robotcar_cameras(path.join(robotcar_path, 'intrinsics'))
    rigs = import_robotcar_rig(path.join(robotcar_path, 'extrinsics'))

    logger.info("Importing test data")
    # Test data
    image_pattern = re.compile(
        r'(?P<condition>.+)/(?P<camera>\w+)/(?P<timestamp>\d+)\.jpg')
    queries_path = path.join(robotcar_path, '3D-models', 'individual',
                             'queries_per_location')
    kapture_imported_query = {}
    for root, dirs, files in os.walk(queries_path):
        for query_file in files:
            records_camera = kapture.RecordsCamera()
            # Get list of query images
            with open(path.join(queries_path, query_file)) as f:
                for line in f:
                    matches = image_pattern.match(line)
                    image_path = line.strip()
                    if not matches:
                        logger.warning(f"Error matching line in {image_path}")
                        continue
                    matches = matches.groupdict()
                    timestamp = int(matches['timestamp'])
                    camera = str(matches['camera'])
                    condition = str(matches['condition'])
                    records_camera[timestamp, camera] = image_path

                (query_name, _) = query_file.split('.')
                kapture_test = kapture.Kapture(sensors=cameras,
                                               rigs=rigs,
                                               records_camera=records_camera)
                kapture_imported_query[int(
                    query_name.split('_')[-1])] = kapture_test

    # Reference map data
    logger.info("Importing reference map")
    colmap_reconstructions_path = path.join(robotcar_path, '3D-models',
                                            'individual',
                                            'colmap_reconstructions')
    kapture_imported_mapping = {}
    for root, dirs, files in os.walk(colmap_reconstructions_path):
        for colmap_reconstruction in dirs:
            (loc_id, _) = colmap_reconstruction.split('_')
            kapture_reconstruction_dir = path.join(kapture_path,
                                                   f"{int(loc_id):02d}",
                                                   "mapping")
            delete_existing_kapture_files(kapture_reconstruction_dir,
                                          force_erase=force_overwrite_existing)
            logger.info(f'Converting reconstruction {loc_id} to kapture  ...')
            kapture_reconstruction_data = import_robotcar_colmap_location(
                robotcar_path,
                path.join(colmap_reconstructions_path, colmap_reconstruction),
                kapture_reconstruction_dir, rigs, skip_reconstruction)
            # replace intrinsics with the ones found in the text files
            if not use_colmap_intrinsics:
                kapture_reconstruction_data.sensors = cameras
            kapture_imported_mapping[int(loc_id)] = kapture_reconstruction_data

    if not import_v1:
        queries_per_location = {
            image_name: (ts, cam_id, loc_id)
            for loc_id, kdata_test in kapture_imported_query.items() for ts,
            cam_id, image_name in kapture.flatten(kdata_test.records_camera)
        }
        kapture_imported_training = {}  # stores kapture for each submap
        # read robotcar_v2_train.txt
        v2_train_data = read_robotcar_v2_train(robotcar_path)
        for image_name, pose in v2_train_data.items():
            ts, cam_id, loc_id = queries_per_location[image_name]
            assert cam_id == 'rear'
            # create kapture object for submap if it doesn't exist
            if loc_id not in kapture_imported_training:
                kapture_loc_id = kapture.Kapture(sensors=cameras, rigs=rigs)
                kapture_loc_id.records_camera = kapture.RecordsCamera()
                kapture_loc_id.trajectories = kapture.Trajectories()
                kapture_imported_training[loc_id] = kapture_loc_id
            kapture_imported_training[loc_id].records_camera[
                ts, cam_id] = image_name
            kapture_imported_training[loc_id].trajectories[ts, cam_id] = pose
            matches = image_pattern.match(image_name)
            if not matches:
                logger.warning(f"Error matching line in {image_name}")
                continue
            matches = matches.groupdict()
            condition = str(matches['condition'])
            timestamp = str(matches['timestamp'])
            camera = str(matches['camera'])
            # added left and right images in records_camera
            left_image_name = condition + '/' + 'left' + '/' + timestamp + '.jpg'
            right_image_name = condition + '/' + 'right' + '/' + timestamp + '.jpg'
            kapture_imported_training[loc_id].records_camera[
                ts, 'left'] = left_image_name
            kapture_imported_training[loc_id].records_camera[
                ts, 'right'] = right_image_name

            # remove entries from query
            del kapture_imported_query[loc_id].records_camera[ts][cam_id]
            del kapture_imported_query[loc_id].records_camera[ts]['left']
            del kapture_imported_query[loc_id].records_camera[ts]['right']
            del kapture_imported_query[loc_id].records_camera[ts]

        # all remaining query images are kept; reading robotcar_v2_test.txt is not necessary

    # apply rig collapse
    if rig_collapse:
        logger.info('replacing camera poses with rig poses.')
        for kdata_mapping in kapture_imported_mapping.values():
            kapture.rigs_recover_inplace(kdata_mapping.trajectories, rigs,
                                         'rear')
        for kdata_training in kapture_imported_training.values():
            kapture.rigs_recover_inplace(kdata_training.trajectories, rigs,
                                         'rear')

    # IO operations
    robotcar_image_path = path.join(robotcar_path, "images")
    for loc_id, kdata_query in kapture_imported_query.items():
        loc_id_str = f"{loc_id:02d}"
        logger.info(f'writing test data: {loc_id_str}')
        kapture_test_dir = path.join(kapture_path, loc_id_str, "query")
        delete_existing_kapture_files(kapture_test_dir,
                                      force_erase=force_overwrite_existing)
        if not kdata_query.records_camera:  # all images were removed
            continue
        kapture_to_dir(kapture_test_dir, kdata_query)
        query_images = [
            f for _, _, f in kapture.flatten(kdata_query.records_camera)
        ]
        import_record_data_from_dir_auto(robotcar_image_path, kapture_test_dir,
                                         query_images, images_import_method)

    for loc_id, kdata_mapping in kapture_imported_mapping.items():
        loc_id_str = f"{loc_id:02d}"
        logger.info(f'writing mapping data: {loc_id_str}')
        kapture_reconstruction_dir = path.join(kapture_path, f"{loc_id:02d}",
                                               "mapping")
        delete_existing_kapture_files(kapture_reconstruction_dir,
                                      force_erase=force_overwrite_existing)
        kapture_to_dir(kapture_reconstruction_dir, kdata_mapping)
        mapping_images = [
            f for _, _, f in kapture.flatten(kdata_mapping.records_camera)
        ]
        import_record_data_from_dir_auto(robotcar_image_path,
                                         kapture_reconstruction_dir,
                                         mapping_images, images_import_method)

    for loc_id, kdata_training in kapture_imported_training.items():
        loc_id_str = f"{loc_id:02d}"
        logger.info(f'writing training data: {loc_id_str}')
        kapture_training_dir = path.join(kapture_path, f"{loc_id:02d}",
                                         "training")
        delete_existing_kapture_files(kapture_training_dir,
                                      force_erase=force_overwrite_existing)
        kapture_to_dir(kapture_training_dir, kdata_training)
        mapping_images = [
            f for _, _, f in kapture.flatten(kdata_training.records_camera)
        ]
        import_record_data_from_dir_auto(robotcar_image_path,
                                         kapture_training_dir, mapping_images,
                                         images_import_method)
Ejemplo n.º 5
0
def import_robotcar_seasons(
        robotcar_path:
    str,  # noqa: C901: function a bit long but not too complex
        kapture_path: str,
        force_overwrite_existing: bool = False,
        images_import_method: TransferAction = TransferAction.skip,
        import_feature_db: bool = False,
        skip_reconstruction: bool = False,
        rig_collapse: bool = False,
        use_colmap_intrinsics: bool = False,
        import_v1: bool = False) -> None:
    """
    Read the RobotCar Seasons data, creates several kaptures with training and query data.

    :param robotcar_path: path to the robotcar top directory
    :param kapture_path: path to the kapture top directory
    :param force_overwrite_existing: Silently overwrite kapture files if already exists.
    :param images_import_method: choose how to import actual image files.
    :param import_feature_db: if True, will import the features from the database
    :param skip_reconstruction: if True, will skip the reconstruction part from the training data
    :param rig_collapse: if True, will collapse the rig
    :param use_colmap_intrinsics: if True, will use the colmap intrinsics
    :param import_v1: if True, will use the version 1 of the format
    """

    os.makedirs(kapture_path, exist_ok=True)

    cameras = import_robotcar_cameras(path.join(robotcar_path, 'intrinsics'))
    rigs = import_robotcar_rig(path.join(robotcar_path, 'extrinsics'))

    logger.info("Importing test data")
    # Test data
    image_pattern = re.compile(
        r'(?P<condition>.+)/(?P<camera>\w+)/(?P<timestamp>\d+)\.jpg')
    queries_path = path.join(robotcar_path, '3D-models', 'individual',
                             'queries_per_location')
    kapture_imported_query = {}
    for root, dirs, files in os.walk(queries_path):
        for query_file in files:
            records_camera = kapture.RecordsCamera()
            # Get list of query images
            with open(path.join(queries_path, query_file)) as f:
                for line in f:
                    matches = image_pattern.match(line)
                    image_path = line.strip()
                    if not matches:
                        logger.warning(f"Error matching line in {image_path}")
                        continue
                    matches = matches.groupdict()
                    timestamp = int(matches['timestamp'])
                    camera = str(matches['camera'])
                    # condition = str(matches['condition']) : not used ?
                    records_camera[timestamp, camera] = image_path

                (query_name, _) = query_file.split('.')
                kapture_test = kapture.Kapture(sensors=cameras,
                                               rigs=rigs,
                                               records_camera=records_camera)
                kapture_imported_query[int(
                    query_name.split('_')[-1])] = kapture_test

    # Training data
    logger.info("Importing training data")
    colmap_reconstructions_path = path.join(robotcar_path, '3D-models',
                                            'individual',
                                            'colmap_reconstructions')
    kapture_imported_training = {}
    for root, dirs, files in os.walk(colmap_reconstructions_path):
        for colmap_reconstruction in dirs:
            (loc_id, _) = colmap_reconstruction.split('_')
            kapture_reconstruction_dir = path.join(kapture_path,
                                                   f"{int(loc_id):02d}",
                                                   "mapping")
            delete_existing_kapture_files(kapture_reconstruction_dir,
                                          force_overwrite_existing)
            logger.info(f'Converting reconstruction {loc_id} to kapture  ...')
            kapture_reconstruction_data = import_robotcar_colmap_location(
                robotcar_path,
                path.join(colmap_reconstructions_path, colmap_reconstruction),
                kapture_reconstruction_dir, rigs, skip_reconstruction)
            # replace intrinsics with the ones found in the text files
            if not use_colmap_intrinsics:
                kapture_reconstruction_data.sensors = cameras
            kapture_imported_training[int(
                loc_id)] = kapture_reconstruction_data

    if not import_v1:
        _import_robotcar_v2_train(robotcar_path, kapture_imported_query,
                                  kapture_imported_training, image_pattern)

    # apply rig collapse
    if rig_collapse:
        logger.info('replacing camera poses with rig poses.')
        for kapture_mapping in kapture_imported_training.values():
            kapture.rigs_recover_inplace(kapture_mapping.trajectories, rigs,
                                         ['rear'])

    # IO operations
    robotcar_image_path = path.join(robotcar_path, "images")
    for loc_id, kapture_query in kapture_imported_query.items():
        loc_id_str = f"{loc_id:02d}"
        logger.info(f'writing test data: {loc_id_str}')
        kapture_test_dir = path.join(kapture_path, loc_id_str, "query")
        delete_existing_kapture_files(kapture_test_dir,
                                      force_overwrite_existing)
        if not kapture_query.records_camera:  # all images were removed
            continue
        kapture_to_dir(kapture_test_dir, kapture_query)
        query_images = [
            f for _, _, f in kapture.flatten(kapture_query.records_camera)
        ]
        import_record_data_from_dir_auto(robotcar_image_path, kapture_test_dir,
                                         query_images, images_import_method)

    for loc_id, kapture_mapping in kapture_imported_training.items():
        loc_id_str = f"{loc_id:02d}"
        logger.info(f'writing mapping data: {loc_id_str}')
        kapture_reconstruction_dir = path.join(kapture_path, f"{loc_id:02d}",
                                               "mapping")
        kapture_to_dir(kapture_reconstruction_dir, kapture_mapping)
        mapping_images = [
            f for _, _, f in kapture.flatten(kapture_mapping.records_camera)
        ]
        import_record_data_from_dir_auto(robotcar_image_path,
                                         kapture_reconstruction_dir,
                                         mapping_images, images_import_method)

    if import_feature_db:
        _import_colmap_overcast_reference(robotcar_path, kapture_path,
                                          force_overwrite_existing)
Ejemplo n.º 6
0
def import_silda(
    silda_dirpath: str,
    destination_kapture_dirpath: str,
    fallback_cam_model: str = 'FOV',
    do_split_cams: bool = False,
    corpus: Optional[str] = None,
    replace_pose_rig: bool = False,
    force_overwrite_existing: bool = False,
    images_import_strategy: TransferAction = TransferAction.link_absolute
) -> None:
    """
    Imports data from silda dataset.

    :param silda_dirpath: path to the silda top directory
    :param destination_kapture_dirpath: input path to kapture directory.
    :param fallback_cam_model: camera model to fallback when necessary
    :param do_split_cams: If true, re-organises and renames the image files to split apart cameras.
    :param corpus: the list of corpus to be imported, among 'mapping', 'query'.
    :param replace_pose_rig: if True, replaces poses of individual cameras with poses of the rig.
    :param force_overwrite_existing: if true, Silently overwrite kapture files if already exists.
    :param images_import_strategy: how to copy image files.
    """

    # sanity check
    silda_dirpath = path_secure(path.abspath(silda_dirpath))
    destination_kapture_dirpath = path_secure(
        path.abspath(destination_kapture_dirpath))
    if TransferAction.root_link == images_import_strategy and do_split_cams:
        raise ValueError(
            'impossible to only link images directory and applying split cam.')
    hide_progress_bars = logger.getEffectiveLevel() >= logging.INFO

    # prepare output directory
    kapture.io.structure.delete_existing_kapture_files(
        destination_kapture_dirpath, force_overwrite_existing)
    os.makedirs(destination_kapture_dirpath, exist_ok=True)

    # images ###########################################################################################################
    logger.info('Processing images ...')
    # silda-images
    #   ...
    #   ├── 1445_0.png
    #   ├── 1445_1.png
    #   ...
    silda_images_root_path = path.join(silda_dirpath, 'silda-images')
    # list all png files (its PNG in silda) using a generator.
    if corpus is not None:
        assert corpus in SILDA_CORPUS_SPLIT_FILENAMES
        # if corpus specified, filter by those which directory name match corpus.
        logger.debug(f'only importing {corpus} part.')
        coprus_filepath = path.join(silda_dirpath,
                                    SILDA_CORPUS_SPLIT_FILENAMES[corpus])
        with open(coprus_filepath, 'rt') as corpus_file:
            corpus_filenames = corpus_file.readlines()
            image_filenames_original = sorted(filename.strip()
                                              for filename in corpus_filenames)
    else:
        image_filenames_original = sorted(
            filename for dirpath, sd, fs in os.walk(silda_images_root_path)
            for filename in fs if filename.endswith('.png'))

    image_filenames_kapture = []
    snapshots = kapture.RecordsCamera()
    image_name_to_ids = {}  # '1445_0.png' -> (1445, 0)
    for image_filename_original in tqdm(image_filenames_original,
                                        disable=hide_progress_bars):
        # retrieve info from image filename
        shot_info = SILDA_IMAGE_NAME_PATTERN.match(image_filename_original)
        assert shot_info is not None
        shot_info = shot_info.groupdict()
        shot_info['timestamp'] = int(
            shot_info['timestamp']
        )  # To avoid warnings about type of the value
        # eg. file_info = {'filename': '1445_0.png', 'timestamp': 1445, 'cam_id': '0'}
        # create a path of the image into NLE dir
        if do_split_cams:
            # re-organise images with subfolders per corpus/camera/timestamp.png
            kapture_image_filename = path.join(
                shot_info['cam_id'],
                '{:04d}.png'.format(shot_info['timestamp']))
        else:
            # keep the original file hierarchy
            kapture_image_filename = image_filename_original

        image_filenames_kapture.append(kapture_image_filename)
        snapshots[shot_info['timestamp'],
                  shot_info['cam_id']] = kapture_image_filename
        image_name_to_ids[shot_info['filename']] = (shot_info['timestamp'],
                                                    shot_info['cam_id'])

    assert len(image_filenames_kapture) == len(image_filenames_original)
    # intrinsics #######################################################################################################
    logger.info('Processing sensors ...')
    cameras = kapture.Sensors()
    # use hard coded intrinsics
    # evaluated using colmap
    # 1 OPENCV_FISHEYE 1024 1024 393.299 394.815 512 512 -0.223483 0.117325 -0.0326138 0.00361082
    #                  fx, fy, cx, cy, omega
    # 1 FOV 1024 1024 300 300 512 512 0.899632
    cam_id_list = sorted(
        set(cam_id for _, cam_id, _ in kapture.flatten(snapshots)))
    for cam_id in cam_id_list:
        # pick a image for that cam id
        random_image_intrinsic = next(
            f'{timestamp}_{cam_id}.intrinsics'  # keep only filename (thats what silda expect)
            for timestamp, cid, filename in kapture.flatten(snapshots)
            if cid == cam_id)
        logger.debug(
            f'camera {cam_id} intrinsics : picking at random: ("{random_image_intrinsic}")'
        )
        intrinsic_filepath = path.join(silda_dirpath, 'camera-intrinsics',
                                       random_image_intrinsic)
        logger.debug(f'loading file: "{intrinsic_filepath}"')
        silda_proj_params = np.loadtxt(intrinsic_filepath)
        # only retrieve principal point from intrinsics,
        # because the rest correspond to a fisheye model not available in colmap.
        principal_point = (silda_proj_params[0:2] *
                           SILDA_IMAGE_SIZE).flatten().tolist()
        projection = fallback_cam_model
        if 'OPENCV_FISHEYE' == projection:
            focal_length = [393.299, 394.815]
            fisheye_coefficients = [
                -0.223483, 0.117325, -0.0326138, 0.00361082
            ]
            #          //    fx, fy, cx, cy, k1, k2, k3, k4
            proj_params = focal_length + principal_point + fisheye_coefficients
        elif 'FOV' == projection:
            # use hard coded intrinsics from Torsten reconstruction, ie. :
            #       217.294036, 217.214703, 512.000000, 507.897400, -0.769113
            focal_length = [217.294036, 217.214703]
            # principal_point = [512.000000, 507.897400]
            omega = [-0.769113]
            #                  fx, fy, cx, cy, omega
            proj_params = focal_length + principal_point + omega
        else:
            raise ValueError(
                'Only accepts OPENCV_FISHEYE, or FOV as projection model.')

        camera = kapture.Camera(projection,
                                SILDA_IMAGE_SIZE.tolist() + proj_params)
        cameras[cam_id] = camera

    # extrinsics #######################################################################################################
    logger.info('Processing trajectories ...')
    trajectories = kapture.Trajectories()
    with open(path.join(silda_dirpath, 'silda-train-poses.txt')) as file:
        lines = file.readlines()
        lines = (line.rstrip().split() for line in lines)
        extrinsics = {
            line[0]: np.array(line[1:8], dtype=np.float)
            for line in lines
        }

    for silda_image_name, pose_params in tqdm(extrinsics.items(),
                                              disable=hide_progress_bars):
        # Silda poses are 7-dim vectors with the rotation quaternion,
        # and the translation vector. The order needs to be:
        # qw,qx,qy,qz,tx,ty,tz
        # The parameters should be described in terms of camera to world transformations
        if silda_image_name not in image_name_to_ids:
            # if this is not referenced: means its part of the corpus to be ignored.
            continue
        pose = kapture.PoseTransform(pose_params[0:4],
                                     pose_params[4:7]).inverse()
        timestamp, cam_id = image_name_to_ids[silda_image_name]
        trajectories[timestamp, cam_id] = pose

    # rigs
    logger.info('Making up a rig ...')
    rigs = kapture.Rigs()
    pose_babord = kapture.PoseTransform(t=[0, 0, 0],
                                        r=quaternion.from_rotation_vector(
                                            [0, -np.pi / 2, 0]))
    pose_tribord = kapture.PoseTransform(t=[0, 0, 0],
                                         r=quaternion.from_rotation_vector(
                                             [0, np.pi / 2, 0]))
    rigs['silda_rig', '0'] = pose_babord
    rigs['silda_rig', '1'] = pose_tribord
    if replace_pose_rig:
        logger.info('replacing camera poses with rig poses.')
        kapture.rigs_recover_inplace(trajectories, rigs)

    # pack it all together
    kapture_data = kapture.Kapture(sensors=cameras,
                                   records_camera=snapshots,
                                   trajectories=trajectories,
                                   rigs=rigs)

    logger.info('saving to Kapture  ...')
    kapture.io.csv.kapture_to_dir(destination_kapture_dirpath, kapture_data)

    # finally import images
    if images_import_strategy != TransferAction.skip:
        # importing image files
        logger.info(f'importing {len(image_filenames_original)} images ...')
        assert len(image_filenames_original) == len(image_filenames_kapture)
        image_filepaths_original = [
            path.join(silda_images_root_path, image_filename_kapture)
            for image_filename_kapture in image_filenames_original
        ]
        image_filepaths_kapture = [
            get_image_fullpath(destination_kapture_dirpath,
                               image_filename_kapture)
            for image_filename_kapture in image_filenames_kapture
        ]
        transfer_files_from_dir(image_filepaths_original,
                                image_filepaths_kapture,
                                images_import_strategy)
    logger.info('done.')