def get_ref(self, cluster_id): surv_data = {} all_ref_objs_found = True for channel_code in objectives_channel_codes: if channel_code == 'prevalence': prev_data = c2p(cluster_id) if prev_data: surv_data[channel_code] = prev_data else: msg = 'Prevalence objective reference data was not found!\n Skipping plotting cluster ' + cluster_id + ' fit!' print msg all_ref_objs_found = False else: msg = "Channel objective" + channel_code + " not implemented yet!\nSetting objective reference data to None for plotting." warn_p(msg) surv_data[channel_code] = None # one of the reference objective channels was not found; skipping cluster fit! if not all_ref_objs_found: ref = None else: ref = d2f(surv_data) return ref
def fit(self): models_list_prime = calib_data_2_models_list(self.calib_data) best_fits = {} all_fits = {} #all_fits = {'fit':{'min_residual':float('inf')}, } all_fits['min_residual'] = float('inf') all_fits['max_residual'] = 0.0 all_fits['models'] = {} debug_p('category ' + self.category) for idx,cluster_id in enumerate(c2c(self.category)): models_list = copy.deepcopy(models_list_prime) print "Processing cluster " + cluster_id + "." debug_p('Processing cluster ' + cluster_id + " in " + self.category + ".") itn_traj = cluster_2_itn_traj(cluster_id) drug_cov = cluster_2_drug_cov(cluster_id) # prune models to the ones matching prior data cluster_models = [] for model in models_list: model_meta = model.get_meta() if model_meta['group_key'] == get_sim_group_key(itn_traj, drug_cov): #debug_p('model id before kariba conversion ' + str(model.get_model_id())) group_key = model_meta['group_key'] sim_key = model_meta['sim_key'] model = KaribaModel(model, self.calib_data[group_key][sim_key], cluster_id, all_fits = self.fit_terms) #model = kariba_model #debug_p('model id after kariba conversion ' + str(model.get_model_id())) cluster_models.append(model) surv_data = {} all_ref_objs_found = True for channel_code in objectives_channel_codes: if channel_code == 'prevalence': prev_data = c2p(cluster_id) if prev_data: surv_data[channel_code] = prev_data else: msg = 'Prevalence objective reference data was not found!\n Skipping cluster ' + cluster_id + ' fit!' print msg all_ref_objs_found = False else: msg = "Channel objective" + channel_code + " not implemented yet!\nSetting objective reference data to None." warn_p(msg) surv_data[channel_code] = None # one of the reference objective channels was not found; skipping cluster fit! if not all_ref_objs_found: continue ref = d2f(surv_data) # adjust highest possible fit to account for RDT+ model in dtk not reflecting reality at the upper end obj_prev = ref.get_obj_by_name('prevalence') d_points = obj_prev.get_points() obj_prev.set_points([min(point, rdt_max) for point in d_points]) fitting_set = FittingSet(cluster_id, cluster_models, ref) if load_prevalence_mse: fit = Fit(fitting_set, type = 'mmse_distance_cached') else: fit = Fit(fitting_set) best_fit_model = fit.best_fit_mmse_distance() min_residual = fit.get_min_residual() max_residual = fit.get_max_residual() if min_residual < all_fits['min_residual']: all_fits['min_residual'] = min_residual if max_residual > all_fits['max_residual']: all_fits['max_residual'] = max_residual if best_fit_model: temp_h, const_h, itn_level, drug_coverage_level = get_model_params(best_fit_model) best_fit_meta = best_fit_model.get_meta() best_fits[cluster_id] = {} best_fits[cluster_id]['habs'] = {} best_fits[cluster_id]['habs']['const_h'] = const_h best_fits[cluster_id]['habs']['temp_h'] = temp_h best_fits[cluster_id]['ITN_cov'] = itn_level best_fits[cluster_id]['category'] = self.category best_fits[cluster_id]['MSAT_cov'] = drug_coverage_level best_fits[cluster_id]['sim_id'] = best_fit_meta['sim_id'] best_fits[cluster_id]['sim_key'] = best_fit_meta['sim_key'] best_fits[cluster_id]['group_key'] = best_fit_meta['group_key'] best_fits[cluster_id]['fit_value'] = best_fit_model.get_fit_val() best_fits[cluster_id]['sim_avg_reinfection_rate'] = best_fit_model.get_sim_avg_reinfection_rate() best_fits[cluster_id]['ref_avg_reinfection_rate'] = best_fit_model.get_ref_avg_reinfection_rate() best_fits[cluster_id]['prevalence'] = best_fit_model.get_objective_by_name('prevalence').get_points() # redundancy; to be refactored via FitEntry class best_fits[cluster_id]['fit'] = {} best_fits[cluster_id]['fit']['value'] = best_fit_model.get_fit_val() best_fits[cluster_id]['fit']['temp_h'] = temp_h best_fits[cluster_id]['fit']['const_h'] = const_h best_fits[cluster_id]['fit']['ITN_cov'] = itn_level best_fits[cluster_id]['fit']['MSAT_cov'] = drug_coverage_level best_fits[cluster_id]['fit']['sim_id'] = best_fit_meta['sim_id'] best_fits[cluster_id]['fit']['sim_key'] = best_fit_meta['sim_key'] best_fits[cluster_id]['mse'] = {} best_fits[cluster_id]['mse']['value'] = fit.get_min_mses()['prevalence']['value'] # get mmse for objective prevalence best_fit_mse_model = fit.get_min_mses()['prevalence']['model'] temp_h, const_h, itn_level, drug_coverage_level = get_model_params(best_fit_mse_model) model_meta_data = best_fit_mse_model.get_meta() best_fits[cluster_id]['mse']['temp_h'] = temp_h best_fits[cluster_id]['mse']['const_h'] = const_h best_fits[cluster_id]['mse']['ITN_cov'] = itn_level best_fits[cluster_id]['mse']['MSAT_cov'] = drug_coverage_level best_fits[cluster_id]['mse']['sim_id'] = model_meta_data['sim_id'] best_fits[cluster_id]['mse']['sim_key'] = model_meta_data['sim_key'] best_fits[cluster_id]['cc_penalty'] = {} best_fits[cluster_id]['cc_penalty']['value'] = fit.get_min_penalties()['prevalence']['value'] # get clinical penalty for objective prevalence; at present this is just the clinical cases penalty; if reinfection is considered the code needs to be adjusted best_fit_cc_penalty_model = fit.get_min_penalties()['prevalence']['model'] temp_h, const_h, itn_level, drug_coverage_level = get_model_params(best_fit_cc_penalty_model) model_meta_data = best_fit_cc_penalty_model.get_meta() best_fits[cluster_id]['cc_penalty']['temp_h'] = temp_h best_fits[cluster_id]['cc_penalty']['const_h'] = const_h best_fits[cluster_id]['cc_penalty']['ITN_cov'] = itn_level best_fits[cluster_id]['cc_penalty']['MSAT_cov'] = drug_coverage_level best_fits[cluster_id]['cc_penalty']['sim_id'] = model_meta_data['sim_id'] best_fits[cluster_id]['cc_penalty']['sim_key'] = model_meta_data['sim_key'] rho = best_fit_model.get_rho() p_val = best_fit_model.get_p_val() if rho and p_val : best_fits[cluster_id]['rho'] = rho best_fits[cluster_id]['p_val'] = p_val debug_p('rho' + str(rho)) debug_p('p_val' + str(p_val)) else: msg = "something went wrong and the best fit for " + cluster_id + " could not be found." warn_p(msg) all_fits['models'][cluster_id] = cluster_models #all_fits['models'][cluster_id] = fit.get_fitting_set_models() print str(idx+1) + " clusters have been processed." debug_p( str(idx+1) + " clusters have been processed in category " + self.category) ''' if idx > 0: break ''' return best_fits, all_fits