Ejemplo n.º 1
0
def main(test_file):
    kassnn_f = Path("kass_nn")
    train_filename = kassnn_f / "level_2/train_logs/min_meth/train_min_meth.log"
    test_filename = kassnn_f / str("level_2/test_logs/min_meth/" + test_file)
    config_file = kassnn_f / "config/config.yml"
    logpar = LogParser(train_filename)
    characteristic = MinMeth(logpar, config_file)
    # Loading training data
    X_train = lp.load_parsed_data(train_filename, True, characteristic)
    # Loading testing data
    X_test = lp.load_parsed_data(test_filename, False, characteristic)
    # Training model
    clf = eif.train_model(X_train, characteristic, characteristic.n_threads)
    # Predicting model
    anomaly_scores = eif.predict_wo_train(X_test, clf,
                                          characteristic.n_threads)
    i = 0
    for anom in anomaly_scores:
        print(
            "TEST {}\n\tFull anomaly value: {}\n\tDangerousness in range [0-5]: {}"
            .format(i, anom, get_dangerousness_int(anom)))
        i += 1
    # Plotting model
    fig = plt.open_plot()
    plt.plot_model(fig, X_train, X_test, anomaly_scores, clf,
                   characteristic.mesh, [1, 1, 1], "Min vs Meth",
                   characteristic.n_threads)
    plt.close_plot()
Ejemplo n.º 2
0
def main(test_file):
    kassnn_f = Path("kass_nn")
    train_filename = kassnn_f / "level_2/train_logs/main/train_main.log"
    test_filename = kassnn_f / str("level_2/test_logs/main/" + test_file)
    config_file = kassnn_f / "config/config.yml"
    logpar = LogParser(train_filename)
    trainpredict = TrainPredict(train_filename, config_file, logpar)
    trainpredict.train_all()
    trainpredict.predict_all(test_filename)
Ejemplo n.º 3
0
def main(test_file):
    kassnn_f = Path("kass_nn")
    train_filename = kassnn_f / "level_1/train_logs/main/train_main.log"
    test_filename = kassnn_f / str("level_1/test_logs/main/" + test_file)
    config_file = kassnn_f / "config/config.yml"
    logpar = LogParser(train_filename)
    X_test = logpar.get_string_variables(test_filename)
    i = 0
    for test in X_test:
        print("TEST {}".format(i))
        presence_list_single = dangerousness.is_in_training_single(
            test, logpar)
        presence_list_combined = dangerousness.is_in_training_combined(
            test, logpar)
        print("\tDangerousness in range [0-100]: {}".format(
            dangerousness.get_danger_value(presence_list_single,
                                           presence_list_combined,
                                           config_file)))
        i += 1
def main(test_file):
    kassnn_f = Path("kass_nn")
    train_filename = kassnn_f / "level_2/train_logs/foreach_ip_url/train_foreach_ip_url_spec.log"
    test_filename = kassnn_f / str("level_2/test_logs/foreach_ip_url/" +
                                   test_file)
    config_file = kassnn_f / "config/config.yml"
    logpar = LogParser(train_filename)
    characteristic = IPMinURL(logpar, config_file)

    # Loading training data
    X_train = lp.load_parsed_data(train_filename, True, characteristic)

    # Loading testing data
    X_test = lp.load_parsed_data(test_filename, False, characteristic)

    # Training model
    if isinstance(X_train, dict):
        for key in X_train:
            characteristic.clfs_by_ip[key] = eif.train_model(
                X_train[key], characteristic)
    else:
        clf = eif.train_model(X_train)
    # Predicting model
    i = 0
    for log in X_test:
        ip = characteristic.get_group_criteria(log)
        if ip in X_train:
            anomaly_scores = eif.predict_wo_train(
                [log], characteristic.clfs_by_ip[ip], characteristic.n_threads)
            print(
                "TEST {}\n\tFull anomaly value: {}\n\tDangerousness in range [0-5]: {}"
                .format(i, anomaly_scores[0],
                        get_dangerousness_int(anomaly_scores[0])))
        # Plotting model
        fig = plt.open_plot()
        plt.plot_model(fig, X_train[ip], [log], anomaly_scores,
                       characteristic.clfs_by_ip[ip], characteristic.mesh,
                       [1, 1, 1], "Min vs URL by IP", characteristic.n_threads)
        plt.close_plot()
        i += 1
Ejemplo n.º 5
0
def preparing(train_filename):
    print("*" * 40 + " PARSING TRAINING DATA " + "*" * 40)
    logpar = LogParser(train_filename)
    return logpar