Ejemplo n.º 1
0
    def runTest(self):
        nx, ny, nz, str_f, pt0, pt1, is_array = self.args
        slice_xyz = common.slices_two_points(pt0, pt1)

        # generate random source
        if is_array:
            shape = common.shape_two_points(pt0, pt1)
            value = np.random.rand(*shape).astype(np.float32)
        else:
            value = np.random.ranf()

        # instance
        fields = Fields(0, nx, ny, nz, '', 'single')

        tfunc = lambda tstep: np.sin(0.03 * tstep)
        incident = IncidentDirect(fields, str_f, pt0, pt1, tfunc, value)

        # host allocations
        eh = np.zeros(fields.ns_pitch, dtype=fields.dtype)

        # verify
        eh[slice_xyz] = fields.dtype(value) * fields.dtype(tfunc(1))
        fields.update_e()
        fields.update_h()

        copy_eh_buf = fields.get_buf(str_f)
        copy_eh = np.zeros_like(eh)
        cuda.memcpy_dtoh(copy_eh, copy_eh_buf)

        original = eh[slice_xyz]
        copy = copy_eh[slice_xyz]
        norm = np.linalg.norm(original - copy)
        self.assertEqual(norm, 0, '%s, %g' % (self.args, norm))

        fields.context_pop()
Ejemplo n.º 2
0
    def runTest(self):
        nx, ny, nz, str_f, pt0, pt1, is_array = self.args
        slice_xyz = common.slices_two_points(pt0, pt1)

        # generate random source
        if is_array:
            shape = common.shape_two_points(pt0, pt1)
            value = np.random.rand(*shape).astype(np.float32)
        else:
            value = np.random.ranf()

        # instance
        gpu_devices = common_gpu.gpu_device_list(print_info=False)
        context = cl.Context(gpu_devices)
        device = gpu_devices[0]
        qtask = QueueTask()
        fields = Fields(context, device, qtask, nx, ny, nz, '', 'single')

        tfunc = lambda tstep: np.sin(0.03 * tstep)
        incident = IncidentDirect(fields, str_f, pt0, pt1, tfunc, value)

        # host allocations
        eh = np.zeros(fields.ns_pitch, dtype=fields.dtype)

        # verify
        eh[slice_xyz] = fields.dtype(value) * fields.dtype(tfunc(1))
        fields.update_e()
        fields.update_h()
        fields.enqueue_barrier()

        copy_eh_buf = fields.get_buf(str_f)
        copy_eh = np.zeros_like(eh)
        cl.enqueue_copy(fields.queue, copy_eh, copy_eh_buf)

        original = eh[slice_xyz]
        copy = copy_eh[slice_xyz]
        norm = np.linalg.norm(original - copy)
        self.assertEqual(norm, 0, '%s, %g' % (self.args, norm))
Ejemplo n.º 3
0
#exch = node.ExchangeMpiBufferBlock(fields, direction)
#exch = node.ExchangeMpiBufferBlockSplit(fields, direction)
exch = node.ExchangeMpiBufferNonBlockSplitEnqueue(fields, direction, tmax)
if '+' in direction: cpu.Core(exch.cpuf_p)
if '-' in direction: cpu.Core(exch.cpuf_m)

is_master = True if rank == 0 else False

if is_plot:
    Pbc(fields, 'yz')
    getf = GetFields(fields, 'ez', (0, 0, 0.5), (-1, -1, 0.5))

    tfunc = lambda tstep: 40 * np.sin(0.05 * tstep)
    if rank < size - 1:
        IncidentDirect(fields, 'ez', (220, 0.5, 0), (220, 0.5, -1), tfunc)
    #if rank > 0:
    #    IncidentDirect(fields, 'ez', (20, 0.5, 0), (20, 0.5, -1), tfunc)

    if is_master:
        # plot
        import matplotlib.pyplot as plt
        plt.ion()
        fig = plt.figure(figsize=(12, 8))
        arr = np.zeros((size * nx, ny), fields.dtype)
        for i in range(1, size):
            plt.plot((i * nx, i * nx), (0, ny), color='k', linewidth=1.2)
        imag = plt.imshow(arr.T,
                          interpolation='nearest',
                          origin='lower',
                          vmin=-0.7,
Ejemplo n.º 4
0
import matplotlib as mpl
mpl.rc('image', interpolation='nearest', origin='lower')
#plt.ion()
fig = plt.figure(figsize=(14, 8))

# gpu device
gpu_devices = common_gpu.gpu_device_list(print_info=False)
context = cl.Context(gpu_devices)
device = gpu_devices[0]

# z-axis
nx, ny, nz = 180, 160, 2
fields = Fields(context, device, nx, ny, nz)
Pbc(fields, 'xyz')
Core(fields)
IncidentDirect(fields, 'ey', (20, 0, 0), (20, ny - 1, nz - 1), tfunc)
IncidentDirect(fields, 'ex', (0, 20, 0), (nx - 1, 20, nz - 1), tfunc)

for tstep in xrange(1, tmax + 1):
    fields.update_e()
    fields.update_h()

ax1 = fig.add_subplot(2, 3, 1)
getf = GetFields(fields, 'ey', (0, 0, nz / 2), (nx - 1, ny - 1, nz / 2))
getf.get_event().wait()
ax1.imshow(getf.get_fields().T, vmin=-1.1, vmax=1.1)
ax1.set_title('%s, ey[20,:,:]' % repr(fields.ns))
ax1.set_xlabel('x')
ax1.set_ylabel('y')

ax2 = fig.add_subplot(2, 3, 4)
Ejemplo n.º 5
0
ax1 = fig.add_subplot(1, 3, 1)
ax2 = fig.add_subplot(1, 3, 2)
ax3 = fig.add_subplot(1, 3, 3)

# gpu device
gpu_devices = common_gpu.gpu_device_list(print_info=False)
context = cl.Context(gpu_devices)
device = gpu_devices[0]

# xy-plane
nx, ny, nz = 180, 160, 2
fields = Fields(context, device, nx, ny, nz)
Pbc(fields, 'z')
Pml(fields, ('+-', '+-', ''), npml)
Core(fields)
IncidentDirect(fields, 'ez', (0.4, 0.3, 0), (0.4, 0.3, -1), tfunc) 
getf = GetFields(fields, 'ez', (0, 0, 0.5), (-1, -1, 0.5))

for tstep in xrange(1, tmax+1):
    fields.update_e()
    fields.update_h()

getf.get_event().wait()
ax1.imshow(getf.get_fields().T, vmin=-1.1, vmax=1.1)
ax1.set_title('xy-plane')
ax1.set_xlabel('x')
ax1.set_ylabel('y')

# yz-plane
nx, ny, nz = 2, 180, 160
fields = Fields(context, device, nx, ny, nz)
Ejemplo n.º 6
0
from kemp.fdtd3d.gpu import Fields, Core, Pbc, IncidentDirect, GetFields


nx, ny, nz = 160, 140, 32
tmax, tgap = 150, 10 

# instances 
gpu_devices = common_gpu.gpu_device_list(print_info=False)
context = cl.Context(gpu_devices)
device = gpu_devices[0]
fields = Fields(context, device, nx, ny, nz)
Core(fields)
Pbc(fields, 'xyz')

tfunc = lambda tstep: np.sin(0.05 * tstep)
IncidentDirect(fields, 'ez', (20, 0, 0), (20, ny-1, nz-1), tfunc) 
#IncidentDirect(fields, 'ez', (0, 20, 0), (nx-1, 20, nz-1), tfunc) 
getf = GetFields(fields, 'ez', (0, 0, nz/2), (nx-1, ny-1, nz/2))

print fields.instance_list

# plot
import matplotlib.pyplot as plt
plt.ion()
fig = plt.figure(figsize=(12,8))
imag = plt.imshow(np.zeros((nx, ny), fields.dtype).T, interpolation='nearest', origin='lower', vmin=-1.1, vmax=1.1)
plt.colorbar()

# main loop
from datetime import datetime
t0 = datetime.now()
Ejemplo n.º 7
0
import sys, os
sys.path.append(os.path.expanduser('~'))
from kemp.fdtd3d.util import common_gpu
from kemp.fdtd3d.gpu import Fields, Core, Pbc, IncidentDirect, GetFields

nx, ny, nz = 160, 140, 32
tmax, tgap = 150, 10

# instances
gpu_devices = common_gpu.gpu_device_list(print_info=False)
context = cl.Context(gpu_devices)
device = gpu_devices[0]
fields = Fields(context, device, nx, ny, nz)
Core(fields)
Pbc(fields, 'xyz')
'''
tfunc = lambda tstep: np.sin(0.05 * tstep)
IncidentDirect(fields, 'ez', (20, 0, 0), (20, ny-1, nz-1), tfunc) 
#IncidentDirect(fields, 'ez', (0, 20, 0), (nx-1, 20, nz-1), tfunc) 
getf = GetFields(fields, 'ez', (0, 0, nz/2), (nx-1, ny-1, nz/2))

print fields.instance_list

# plot
import matplotlib.pyplot as plt
plt.ion()
fig = plt.figure(figsize=(12,8))
imag = plt.imshow(np.zeros((nx, ny), fields.dtype).T, interpolation='nearest', origin='lower', vmin=-1.1, vmax=1.1)
plt.colorbar()

# main loop
Ejemplo n.º 8
0
nx, ny, nz = 2, 250, 300
tmax, tgap = 1000, 10
npml = 10

# instances
gpu_devices = common_gpu.gpu_device_list(print_info=False)
context = cl.Context(gpu_devices)
device = gpu_devices[0]
fields = Fields(context, device, nx, ny, nz)
Pbc(fields, 'x')
Pml(fields, ('', '+-', '+-'), npml)
Core(fields)

tfunc = lambda tstep: 50 * np.sin(0.05 * tstep)
IncidentDirect(fields, 'ex', (0, 0.4, 0.3), (-1, 0.4, 0.3), tfunc)
getf = GetFields(fields, 'ex', (0.5, 0, 0), (0.5, -1, -1))

print fields.instance_list

# plot
import matplotlib.pyplot as plt
plt.ion()
fig = plt.figure(figsize=(12, 8))
imag = plt.imshow(np.zeros((ny, nz), fields.dtype).T,
                  interpolation='nearest',
                  origin='lower',
                  vmin=-1.1,
                  vmax=1.1)
plt.xlabel('y')
plt.ylabel('z')
Ejemplo n.º 9
0
from kemp.fdtd3d.util import common_gpu
from kemp.fdtd3d.gpu import Fields, Core, Pbc, IncidentDirect, GetFields

nx, ny, nz = 2, 160, 140
tmax, tgap = 150, 10

# instances
gpu_devices = common_gpu.gpu_device_list(print_info=False)
context = cl.Context(gpu_devices)
device = gpu_devices[0]
fields = Fields(context, device, nx, ny, nz)
Pbc(fields, 'xyz')
Core(fields)

tfunc = lambda tstep: np.sin(0.05 * tstep)
IncidentDirect(fields, 'ex', (0, 20, 0), (-1, 20, -1), tfunc)
#IncidentDirect(fields, 'ex', (0, 0, 20), (-1, -1, 20), tfunc)
getf = GetFields(fields, 'ex', (0.5, 0, 0), (0.5, -1, -1))

print fields.instance_list

# plot
import matplotlib.pyplot as plt
plt.ion()
fig = plt.figure(figsize=(12, 8))
imag = plt.imshow(np.zeros((ny, nz), fields.dtype).T,
                  interpolation='nearest',
                  origin='lower',
                  vmin=-1.1,
                  vmax=1.1)
plt.xlabel('y')